import numpy as np import tensorflow as tf #from scipy.misc import imresize from skimage.transform import resize import matplotlib.pyplot as plt from CNN_Interpolate_tf import create_CNN_int, create_loss, create_optimizer, create_placeholders, Interpolation_model #logs_path = "./logs" # path to the folder that we want to save the logs for Tensorboard # ================================= Get training data ============================================ import os os.chdir('M:\FYS-STK4155\Project3\LoadSegyData') from LoadTrainingData import load_dat # Import seismic data for training data = load_dat('Training_data.mat') os.chdir('M:\FYS-STK4155\Project3') # Split data to training set and test set X_train = data[0:15] X_test = data[15:20] X_train = X_train[:, 0:200, :] X_test = X_test[:, 0:200, :] #============================= Plotting train and test sets ====================================== # plot the training and test images n = 5 plt.figure(figsize=(10, 10)) for i in range(n):
#from skimage.transform import resize import matplotlib.pyplot as plt os.chdir('M:\FYS-STK4155\Project3') from CNN_Interpolate_subpix_reg_tf import create_CNN_int, create_loss, create_optimizer, create_placeholders, Interpolation_model, create_huber_loss, create_loss_l1 from DisplayImages import display_gathers, display_training_im, plotCNNFilter from sklearn.metrics import mean_squared_error, r2_score from ImageMetrics import PSNR #logs_path = "./logs" # path to the folder that we want to save the logs for Tensorboard # ================================= Get training data ============================================ os.chdir('M:\FYS-STK4155\Project3\LoadSegyData') from LoadTrainingData import load_dat # Import seismic data for training data = load_dat('Training_data_large.mat') os.chdir('M:\FYS-STK4155\Project3') # Split data to training set and test set X_train = data[0:50] X_test = data[50:75] #============================= Define target data and input data for training set and test set ====================================== # Define target images ratio = 4 target_ = X_train target_ = np.expand_dims(target_, axis=3) shape_target = target_.shape target_test = X_test