Exemple #1
0
    default=1,
    help='hyperparameter to blend wct feature and content feature')
parser.add_argument('--gpu',
                    type=int,
                    default=0,
                    help="which gpu to run on.  default is 0")

args = parser.parse_args()

try:
    os.makedirs(args.outf)
except OSError:
    pass

# Data loading code
dataset = Dataset(args.contentPath, args.stylePath, args.fineSize)
loader = torch.utils.data.DataLoader(dataset=dataset,
                                     batch_size=1,
                                     shuffle=False)

wct = WCT(args)


def styleTransfer(contentImg, styleImg, imname, csF):
    sF5 = wct.e5(styleImg)
    cF5 = wct.e5(contentImg)
    sF5 = sF5.data.cpu().squeeze(0)
    cF5 = cF5.data.cpu().squeeze(0)
    csF5 = wct.transform(cF5, sF5, csF, args.alpha)
    Im5 = wct.d5(csF5)

def default_loader(path):
    return Image.open(path).convert('RGB')


if __name__ == "__main__":
    model = ResNet_autoencoder(Bottleneck, DeconvBottleneck, [3, 4, 6, 3],
                               3).cuda()

    model.load_state_dict(torch.load(PATH))
    model.eval()

    # Data loading code
    dataset = Dataset(
        "./content",
        "./style",
    )
    loader = torch.utils.data.DataLoader(dataset=dataset,
                                         batch_size=1,
                                         shuffle=False)
    alpha_list = [0.4, 0.6, 0.7, 0.8, 1.0]
    for alpha in alpha_list:
        for i, (contentImg, styleImg, imname) in enumerate(loader):
            imname = imname[0]
            print('Transferring ' + imname)
            contentImg = contentImg.cuda()
            styleImg = styleImg.cuda()
            cImg = Variable(contentImg, volatile=True)
            sImg = Variable(styleImg, volatile=True)

            c, s = model.encoder(cImg), model.encoder(sImg)
    type=int,
    default=-1,
    help="Multi = -1, else for specific level use level = {1,2,3,4,5}")
parser.add_argument('--do_patches', type=bool, default=False)
parser.add_argument('--kernel_size', type=int, default=512)
parser.add_argument('--stride', type=int, default=512)

args = parser.parse_args()

try:
    os.makedirs(args.outf)
except OSError:
    pass

# Data loading code
dataset = Dataset(args.contentPath, args.stylePath, args.fineSize,
                  args.do_patches, args.kernel_size)
loader = torch.utils.data.DataLoader(dataset=dataset,
                                     batch_size=1,
                                     shuffle=False)

wct = WCT(args)


def styleTransfer(contentImg,
                  styleImg,
                  imname,
                  csF,
                  level=-1,
                  save_path=args.outf):
    # print("level= ",level)
    if (level == -1):
Exemple #4
0
# parser.add_argument('--d3', default='../KD/Bin/models/small10x_decoder/3SD_10x_E29S5000.pth')
# parser.add_argument('--d2', default='../KD/Bin/models/my_decoder/2BD_E30S0.pth')
# parser.add_argument('--d1', default='../KD/Bin/models/my_decoder/1BD_E30S0.pth')

args = parser.parse_args()

try:
    os.makedirs(args.outf)
except OSError:
    pass

# Data loading code
contentPath = args.UHD_contentPath if args.UHD else args.contentPath
stylePath = args.UHD_stylePath if args.UHD else args.stylePath
dataset = Dataset(contentPath, stylePath, args.texturePath, args.fineSize,
                  args.picked_content_mark, args.picked_style_mark,
                  args.synthesis)
loader = torch.utils.data.DataLoader(dataset=dataset,
                                     batch_size=1,
                                     shuffle=False)

logprint(args.log_mark)
log = open("samples/log_%s_%s.txt" % (args.mode, args.log_mark), "w+")
logprint(args._get_kwargs(), log)

wct = WCT(args)


@torch.no_grad()
def styleTransfer(encoder, decoder, contentImg, styleImg, csF):
    # sF  = encoder.forward_aux(styleImg)[-1]; torch.cuda.empty_cache()