Exemple #1
0
 def authorize(self):
     """Shows basic usage of the Drive v3 API.
     Prints the names and ids of the first 10 files the user has access to.
     """
     creds = None
     # The file token.pickle stores the user's access and refresh tokens, and is
     # created automatically when the authorization flow completes for the first
     # time.
     if os.path.exists('token.pickle'):
         with open('token.pickle', 'rb') as token:
             creds = pickle.load(token)
     else:
         error("token.pickle doesn't exist")
     # If there are no (valid) credentials available, let the user log in.
     if not creds or not creds.valid:
         if creds and creds.expired and creds.refresh_token:
             # notify("Login again", crashed=True)
             error("Creds expired. Refreshing....")
             creds.refresh(Request())
         else:
             flow = InstalledAppFlow.from_client_secrets_file(
                 'credentials.json', SCOPES)
             creds = flow.run_local_server(port=0)
         # Save the credentials for the next run
         with open('token.pickle', 'wb') as token:
             pickle.dump(creds, token)
     info("Authorized with Drive API")
     self.service = build('drive', 'v3', credentials=creds)
Exemple #2
0
    def delete_duplicate(self):
        info("Deleting duplicate files in drive")
        try:
            self.authorize()
            pageToken = None
            songs = []
            dups = {}
            while True:
                results = self.service.files().list(
                    pageToken=pageToken,
                    fields="nextPageToken, files(id,name,modifiedTime)",
                    orderBy="modifiedTime asc").execute()
                items = results.get('files', [])
                pageToken = results.get('nextPageToken', None)
                songs += items
                if pageToken is None:
                    break

            found_dups = False
            for song in songs:
                if song['name'] in dups:
                    found_dups = True
                    dups[song["name"]].append({
                        'name':
                        song['name'],
                        'id':
                        song['id'],
                        'modifiedTime':
                        song['modifiedTime']
                    })
                else:
                    dups[song["name"]] = [{
                        'name': song['name'],
                        'id': song['id'],
                        'modifiedTime': song['modifiedTime']
                    }]
            if found_dups:
                info("No duplicate files found")
            for dup in dups:
                if len(dups[dup]) > 1:
                    others = sorted(dups[dup],
                                    key=lambda x: x['modifiedTime'])[1:]

                    for inst in others:
                        info(("Deleting duplicate song: {}".format(
                            inst['name'])))
                        self.service.files().delete(
                            fileId=inst['id']).execute()
        except Exception:
            import traceback
            traceback.print_exc()
            stacktrace = traceback.format_exc()
            error(stacktrace)
Exemple #3
0
 def upload(self, key, name, file_path):
     try:
         self.authorize()
         file_metadata = {'name': name, 'key': key}
         media = MediaFileUpload(file_path, mimetype='audio/mpeg')
         result_file = self.service.files().create(body=file_metadata,
                                                   media_body=media,
                                                   fields='id').execute()
         info("Song {} uploaded to drive".format(name))
         self.delete_duplicate()
         return True if result_file else False
     except Exception:
         import traceback
         traceback.print_exc()
         stacktrace = traceback.format_exc()
         error(stacktrace)
def help(name):
    error("usage: {} <dataset_path>".format(name))
    exit()
def save_hook(weights_path):
    return tf.keras.callbacks.ModelCheckpoint(weights_path,
                                              'accuracy',
                                              save_best_only=True,
                                              save_weights_only=True,
                                              mode='max')


#######################################################

if __name__ == '__main__':
    help(argv[0]) if len(argv) < 2 else None
    (training_ds, validation_ds, test_ds) = dataset_load(argv[1])
    if (training_ds, validation_ds, test_ds) == (None, None, None):
        error('Error in datasets loading: check if the paths are correct!')
        exit()

    weights_path = './weights_result'
    training_model = MCModel(training_ds.num_classes, 200, 1)

    (TB_logs_dir, TB_callback) = TB_hooks()
    checkpoint_callback = save_hook(weights_path)

    if os.path.exists('{}.index'.format(weights_path)):
        debug('weights file exists at {}'.format(weights_path))
        try:
            training_model.load_weights(weights_path)
            training_model.compile(
                optimizer=tf.keras.optimizers.Adam(),
                loss=tf.keras.losses.CategoricalCrossentropy(),
Exemple #6
0
        info("{} songs added".format(len(added)))
        check_old_songs_count += 1
        delete_log_file_count += 1

        if check_old_songs_count == check_old_songs_interval:
            info("Checking old songs for new links...")
            check_old_songs()
            check_old_songs_count = 0

        if delete_log_file_count == delete_log_file_interval:
            info("Resetting log file...")
            time.sleep(0.5)
            delete_log_file_count = 0

        info("Waiting for 10 seconds before polling...")
        time.sleep(poll_interval)
    except Exception as err:
        import traceback

        traceback.print_exc()
        stacktrace = traceback.format_exc()

        error(stacktrace)
        msg = "Crashed ... Restarting in 10 seconds"
        check_old_songs_count = 0
        delete_log_file_count = 0
        print(msg)
        # if not stacktrace.__contains__("Temporary failure in name resolution"):
        # notify(msg, crashed=True)
        time.sleep(10)
def help(name):
    error("usage: {} <image_path> [<model_weights>]".format(name))
    exit()
]

if __name__ == '__main__':
    help(argv[0]) if len(argv) < 2 else None

    weigths_path = argv[2] if argv[2] else './weights_result'

    classificator = MalwareClassificator(6, 200, family_labels)

    try:
        if len(argv) >= 3:
            classificator.load_weights(argv[2])
        else:
            classificator.load_weights()
    except IOError as e:
        error(str(e))
        exit()
    
    if not '-q' in argv:
            debug('model correctly loaded')
            debug('loading image {}'.format(argv[1]))
    
    try:
        prediction = classificator.predict(argv[1])
    except Exception as e:
        error(str(e))
        exit()
    
    classificator.model.model().summary()
    exit()