Exemple #1
0
def calcCell(cell):
    """Calculate reciprocal lattice vectors from real space cell parameters"""

    a1, a2, a3, alpha1, alpha2, alpha3 = cell
    realVectorA = np.array([a1, 0, 0])
    realVectorB = a2 * np.array([
        cosd(alpha3), sind(alpha3), 0.0
    ])  #np.dot(np.array([b,0,0]),rotationMatrix(0,0,gamma))
    realVectorC = a3 * np.array([
        cosd(alpha2),
        (cosd(alpha1) - cosd(alpha2) * cosd(alpha3)) / sind(alpha3),
        np.sqrt(1 - cosd(alpha2)**2 - (
            (cosd(alpha1) - cosd(alpha2) * cosd(alpha3)) / sind(alpha3))**2)
    ])  #np.dot(np.array([c,0,0]),rotationMatrix(0,beta,0))

    volume = np.abs(np.dot(realVectorA, np.cross(realVectorB, realVectorC)))
    reciprocalVectorA = 2 * np.pi * np.cross(realVectorB, realVectorC) / volume
    reciprocalVectorB = 2 * np.pi * np.cross(realVectorC, realVectorA) / volume
    reciprocalVectorC = 2 * np.pi * np.cross(realVectorA, realVectorB) / volume

    bv1, bv2, bv3 = reciprocalVectorA, reciprocalVectorB, reciprocalVectorC

    b1, b2, b3 = [np.linalg.norm(x) for x in [bv1, bv2, bv3]]
    beta1 = np.rad2deg(_tools.vectorAngle(bv2, bv3))
    beta2 = np.rad2deg(_tools.vectorAngle(bv3, bv1))
    beta3 = np.rad2deg(_tools.vectorAngle(bv1, bv2))
    cell = [
        a1, a2, a3, b1, b2, b3, alpha1, alpha2, alpha3, beta1, beta2, beta3
    ]
    return cell
Exemple #2
0
    def updateCell(self,unitCell=None):
        """Update cell parameters with current unit cell values.

        Kwargs:
            
            - unitCell (list): List of a,b,c,alpha,beta,gamma. If None, use self.unitCell (default None)

        """
        if unitCell is None:
            unitCell = self.unitCell
        else:
            self.unitCell = unitCell

        self.realVectorA = np.array([self.a,0,0])
        self.realVectorB = self.b*np.array([cosd(self.gamma),sind(self.gamma),0.0])#np.dot(np.array([self.b,0,0]),rotationMatrix(0,0,self.gamma))
        self.realVectorC = self.c*np.array([cosd(self.beta),(cosd(self.alpha)-cosd(self.beta)*cosd(self.gamma))/sind(self.gamma),
        np.sqrt(1-cosd(self.beta)**2-((cosd(self.alpha)-cosd(self.beta)*cosd(self.gamma))/sind(self.gamma))**2)])#np.dot(np.array([self.c,0,0]),rotationMatrix(0,self.beta,0))
        
        self.volume = np.abs(np.dot(self.realVectorA,np.cross(self.realVectorB,self.realVectorC)))
        self.reciprocalVectorA = 2*np.pi*np.cross(self.realVectorB,self.realVectorC)/self.volume
        self.reciprocalVectorB = 2*np.pi*np.cross(self.realVectorC,self.realVectorA)/self.volume
        self.reciprocalVectorC = 2*np.pi*np.cross(self.realVectorA,self.realVectorB)/self.volume
        

        bv1,bv2,bv3 = self.reciprocalVectorA,self.reciprocalVectorB,self.reciprocalVectorC
        a1,a2,a3,alpha1,alpha2,alpha3= self.unitCell
        
        b1,b2,b3 = [np.linalg.norm(x) for x in [bv1,bv2,bv3]]
        beta1 = np.rad2deg(_tools.vectorAngle(bv2,bv3))
        beta2 = np.rad2deg(_tools.vectorAngle(bv3,bv1))
        beta3 = np.rad2deg(_tools.vectorAngle(bv1,bv2))
        self.cell = [a1,a2,a3,b1,b2,b3,alpha1,alpha2,alpha3,beta1,beta2,beta3]
def test_vectorAngle():
    v1 = np.array([1, 0, 0])
    v2 = np.array([0, 1, 0])
    v3 = np.array([1, 1, 1])
    theta1 = vectorAngle(v1, v2)
    theta2 = vectorAngle(v1, v3)
    theta3 = vectorAngle(v2, v3)
    print(theta2)
    assert (np.isclose(theta1, np.pi / 2))
    assert (np.isclose(theta2, theta3))
    assert (np.isclose(theta2, 0.955316618125))
Exemple #4
0
def test_DataFile_Sample_UB():
    df = MJOLNIR.Data.DataFile.DataFile(os.path.join(dataPath,'camea2018n000136.hdf'))
    s = df.sample
    b1,b2,b3 = [np.linalg.norm(x) for x in [s.reciprocalVectorA,s.reciprocalVectorB,s.reciprocalVectorC]]
    a1,a2,a3 = [np.linalg.norm(x) for x in [s.realVectorA,s.realVectorB,s.realVectorC]]
    beta1,beta2,beta3 = _tools.vectorAngle(s.reciprocalVectorB,s.reciprocalVectorC),_tools.vectorAngle(s.reciprocalVectorC,s.reciprocalVectorA),_tools.vectorAngle(s.reciprocalVectorA,s.reciprocalVectorB)
    alpha1,alpha2,alpha3 = _tools.vectorAngle(s.realVectorB,s.realVectorC),_tools.vectorAngle(s.realVectorC,s.realVectorA),_tools.vectorAngle(s.realVectorA,s.realVectorB)

    cell = s.cell#[a1,a2,a3,b1,b2,b3,alpha1,alpha2,alpha3,beta1,beta2,beta3]
    r1 = s.plane_vector1
    r2 = s.plane_vector2

    UBCalc = TasUBlib.calcTasUBFromTwoReflections(cell,r1,r2)
    comparison = np.isclose(UBCalc,s.orientationMatrix,atol=1e-5) # Assert that they are equal to 1e-5 (Numerical error)
    print(np.round(UBCalc,5))
    print(np.round(s.orientationMatrix,5))
    assert(np.all(comparison))
Exemple #5
0
    def calculateProjections(self):
        """Calculate projections and generate projection angles."""
        checks = np.array(['unitCell','orientationMatrix','projectionVector1','projectionVector2']) # 
        boolcheck = np.logical_not(np.array([hasattr(self,x) for x in checks]))
        if np.any(boolcheck):
            raise AttributeError('Sample object is missing: {}.'.format(', '.join(str(x) for x in checks[boolcheck])))
        
        if self.projectionVector1[np.argmax(np.abs(self.projectionVector1))]<0:
            self.projectionVector1*=-1
        if self.projectionVector2[np.argmax(np.abs(self.projectionVector2))]<0:
            self.projectionVector2*=-1

        V1 = self.projectionVector1.copy()
        #V1/=np.linalg.norm(V1)
        V2 = self.projectionVector2.copy()
        #V2/=np.linalg.norm(V2)
        pV1Q = np.dot(self.B,V1)
        pV2Q = np.dot(self.B,V2)
        self.projectionAngle = _tools.vectorAngle(pV1Q,pV2Q)

        if np.isclose(0.0,self.projectionAngle):
            raise AttributeError("The provided orientations are equal.")

        
        UB= self.orientationMatrix
        self.UB = UB

        self.orientationMatrixINV = np.linalg.inv(UB)
        

        p23 = np.array([[1,0,0],[0,1,0]]) # To extract Qx, Qy only
        PM = np.array([V1,V2]).T # Projection matrix
        self.PM = PM
        self.convert = np.dot(p23,np.einsum('ij,jk->ik',UB,PM)) # Convert from projX,projY to Qx, Qy
        self.convertHKL = np.dot(p23,UB) # Convert from HKL to Qx, Qy

        # Calculate 'misalignment' of the projection vector 1
        try:
            self.theta = -TasUBlib.calcTasMisalignment(UB,self.planeNormal,V1)
        except AttributeError:
            self.theta = 0
        
        self.RotMat = _tools.Rot(self.theta) # Create 2x2 rotation matrix
        
        self.convertinv = np.linalg.inv(self.convert) # Convert from Qx, Qy to projX, projY

        self.convertHKLINV = _tools.invert(self.convertHKL) # Convert from Qx, Qy to HKL

        # Calcualte RotationMatrix for UB as block diagonal matrix. Only Qx,Qy part rotates as'
        # calculated in RotMat
        self.RotMat3D = np.eye(3)
        self.RotMat3D[:2,:2] = self.RotMat
        #self.orientationMatrixINV = np.linalg.inv(np.dot(self.RotMat3D,UB))
        self.orientationMatrixINV = np.linalg.inv(self.UB)
Exemple #6
0
    def initialize(self):
        """Initialize the Sample object. Automatically called during __init__method."""
        # From http://gisaxs.com/index.php/Unit_cell
        self.realVectorA = np.array([self.a, 0, 0])
        self.realVectorB = self.b * np.array([
            cosd(self.gamma), sind(self.gamma), 0.0
        ])  #np.dot(np.array([self.b,0,0]),rotationMatrix(0,0,self.gamma))
        self.realVectorC = self.c * np.array([
            cosd(self.beta),
            (cosd(self.alpha) - cosd(self.beta) * cosd(self.gamma)) /
            sind(self.gamma),
            np.sqrt(1 - cosd(self.beta)**2 -
                    ((cosd(self.alpha) - cosd(self.beta) * cosd(self.gamma)) /
                     sind(self.gamma))**2)
        ])  #np.dot(np.array([self.c,0,0]),rotationMatrix(0,self.beta,0))

        self.volume = np.abs(
            np.dot(self.realVectorA,
                   np.cross(self.realVectorB, self.realVectorC)))
        self.reciprocalVectorA = 2 * np.pi * np.cross(
            self.realVectorB, self.realVectorC) / self.volume
        self.reciprocalVectorB = 2 * np.pi * np.cross(
            self.realVectorC, self.realVectorA) / self.volume
        self.reciprocalVectorC = 2 * np.pi * np.cross(
            self.realVectorA, self.realVectorB) / self.volume

        bv1, bv2, bv3 = self.reciprocalVectorA, self.reciprocalVectorB, self.reciprocalVectorC
        a1, a2, a3, alpha1, alpha2, alpha3 = self.unitCell

        b1, b2, b3 = [np.linalg.norm(x) for x in [bv1, bv2, bv3]]
        beta1 = np.rad2deg(_tools.vectorAngle(bv2, bv3))
        beta2 = np.rad2deg(_tools.vectorAngle(bv3, bv1))
        beta3 = np.rad2deg(_tools.vectorAngle(bv1, bv2))
        self.cell = [
            a1, a2, a3, b1, b2, b3, alpha1, alpha2, alpha3, beta1, beta2, beta3
        ]
        self.B = TasUBlib.calculateBMatrix(self.cell)