def decision_function(self,X): if self.is_fitted == False: raise NotFittedError("This KOMD instance is not fitted yet. Call 'fit' with appropriate arguments before using this method.") if self.multiclass_: raise ValueError('Scores are not available for multiclass problems, use predict') KL = process_list(X,self.generator) # X can be a samples matrix or Kernel List return self.estimator.decision_function(self.how_to(KL,self.weights))
def predict_proba(self, X): if not self.is_fitted: raise NotFittedError( "This KOMD instance is not fitted yet. Call 'fit' with appropriate arguments before using this method." ) KL = process_list(X, self.generator) return self.clf.predict_proba( KL) if self.multiclass_ else self.estimator.predict_proba( self.how_to(KL, self.weights))
def _prepare(self,X,Y): '''preprocess data before training''' check_classification_targets(Y) self.classes_ = np.unique(Y) if len(self.classes_) < 2: raise ValueError("The number of classes has to be almost 2; got ", len(self.classes_)) self.multiclass_ = len(self.classes_) > 2 KL = process_list(X,self.generator) # X can be a samples matrix or Kernels List self.KL, self.Y = check_KL_Y(KL,Y) self.n_kernels = len(self.KL) return
def predict(self,X): if not self.is_fitted : raise NotFittedError("This KOMD instance is not fitted yet. Call 'fit' with appropriate arguments before using this method.") KL = process_list(X,self.generator) return self.clf.predict(KL) if self.multiclass_ else self.estimator.predict(self.how_to(KL,self.weights))