def test_kerneldensitypredict(): x, y = data.categorical_2Dmatrix_bernoulli_data() km = kernelmethods.KernelMethods() km.fit(x, y) predict = km.kerneldensitypredict([1, 2], 0.8) assert predict == 0
def test_kerneldensityestimate(): x, y = data.continuous_data_complicated() km = kernelmethods.KernelMethods() km.fit(x, y) kde = km.kerneldensityestimate([5], 1) np.testing.assert_almost_equal(kde, 0)
def test_nadarayaaverage(): x, y = data.continuous_data_complicated() km = kernelmethods.KernelMethods() km.fit(x, y) predict = km.nadarayaaverage(5.5, km.gaussiankernel, 0.01) np.testing.assert_almost_equal(predict, 4.237, 2)
def test_locallinearregression(): x, y = data.continuous_data_complicated() km = kernelmethods.KernelMethods() km.fit(x, y) predict = km.locallinearregression(5.5, km.gaussiankernel, 0.1) np.testing.assert_almost_equal(predict, 5.092, 2)
def test_kernelmethods_fit(): x, y = data.continuous_data_complicated() km = kernelmethods.KernelMethods() km.fit(x, y) assert km.learned