Exemple #1
0
                                    bypass=bypassflag)
Wavelength.fit_lambda(maskname, band, argon, argon, waveops, longslit=longslit)
Wavelength.apply_lambda_simple(maskname,
                               band,
                               argon,
                               waveops,
                               longslit=longslit,
                               smooth=True)

# make sure you use the correct wavelength file generated before
Wavelength_file = 'lambda_solution_wave_stack_H_m150428_0091-0091.fits'

# narrow
Background.handle_background(obsfiles_posAnarrow,
                             Wavelength_file,
                             maskname,
                             band,
                             waveops,
                             target=target_posAnarrow)
Background.handle_background(obsfiles_posCnarrow,
                             Wavelength_file,
                             maskname,
                             band,
                             waveops,
                             target=target_posCnarrow)
# wide
Background.handle_background(obsfiles_posAwide,
                             Wavelength_file,
                             maskname,
                             band,
                             waveops,
                             target=target_posAwide)
Exemple #2
0
def handle_rectification(maskname, in_files, wavename, band_pass, barset_file, options,
        commissioning_shift=3.0):
    '''Handle slit rectification and coaddition.

    Args:
        maskname: The mask name string
        in_files: List of stacked spectra in electron per second. Will look
            like ['electrons_Offset_1.5.txt.fits', 'electrons_Offset_-1.5.txt.fits']
        wavename: path (relative or full) to the wavelength stack file, string
        band_pass: Band pass name, string
        barset_file: Path to a mosfire fits file containing the full set of
            FITS extensions for the barset. It can be any file in the list
            of science files.
    Returns:
        None

    Writes files:
        [maskname]_[band]_[object name]_eps.fits --
            The rectified, background subtracted, stacked eps spectrum
        [maskname]_[band]_[object name]_sig.fits --
            Rectified, background subtracted, stacked weight spectrum (STD/itime)
        [maskname]_[band]_[object_name]_itime.fits
            Rectified, CRR stacked integration time spectrum
        [maskname]_[band]_[object_name]_snrs.fits
            Rectified signal to noise spectrum
    '''

    global edges, dats, vars, itimes, shifts, lambdas, band, fidl, all_shifts
    band = band_pass

    
    dlambda = Wavelength.grating_results(band)

    hpp = Filters.hpp[band]
    fidl = np.arange(hpp[0], hpp[1], dlambda)

    lambdas = IO.readfits(wavename, options)

    if np.any(lambdas[1].data < 0) or np.any(lambdas[1].data > 29000):
        print "***********WARNING ***********"
        print "The file {0} may not be a wavelength file.".format(wavename)
        print "Check before proceeding."
        print "***********WARNING ***********"

    edges, meta = IO.load_edges(maskname, band, options)
    shifts = []

    posnames = []
    postoshift = {}
    
    for file in in_files:

        print ":: ", file
        II = IO.read_drpfits(maskname, file, options)

        off = np.array((II[0]["decoff"], II[0]["raoff"]),dtype=np.float64)
        if "yoffset" in II[0]:
            off = -II[0]["yoffset"]
        else:
            # Deal with data taken during commissioning
            if II[0]["frameid"] == 'A': off = 0.0
            else: off = commissioning_shift

        try: off0
        except: off0 = off

        shift = off - off0

        shifts.append(shift)
        posnames.append(II[0]["frameid"])
        postoshift[II[0]['frameid']] = shift
    
        print "Position {0} shift: {1:2.2f} as".format(off, shift)
    

    plans = Background.guess_plan_from_positions(set(posnames))

    all_shifts = []
    for plan in plans:
        to_append = []
        for pos in plan:
            to_append.append(postoshift[pos])

        all_shifts.append(to_append)

    # Reverse the elements in all_shifts to deal with an inversion
    all_shifts.reverse()

    theBPM = IO.badpixelmask()

    all_solutions = []
    cntr = 0
    for plan in plans:
        p0 = plan[0].replace("'", "p")
        p1 = plan[1].replace("'", "p")
        suffix = "%s-%s" % (p0,p1)
        print "Handling plan %s" % suffix
        fname = "bsub_{0}_{1}_{2}.fits".format(maskname,band,suffix)
        EPS = IO.read_drpfits(maskname, fname, options)
        EPS[1] = np.ma.masked_array(EPS[1], theBPM, fill_value=0)

        fname = "var_{0}_{1}_{2}.fits".format(maskname, band, suffix)
        VAR = IO.read_drpfits(maskname, fname, options)
        VAR[1] = np.ma.masked_array(VAR[1], theBPM, fill_value=np.inf)

        fname = "itime_{0}_{1}_{2}.fits".format(maskname, band, suffix)
        ITIME = IO.read_drpfits(maskname, fname, options)
        ITIME[1] = np.ma.masked_array(ITIME[1], theBPM, fill_value=0)


        dats = EPS
        vars = VAR
        itimes = ITIME

        EPS[0]["ORIGFILE"] = fname

        tock = time.time()
        sols = range(len(edges)-1,-1,-1)

        shifts = all_shifts[cntr]
        cntr += 1
        p = Pool()
        solutions = p.map(handle_rectification_helper, sols)
        #solutions = map(handle_rectification_helper, [15])
        p.close()

        all_solutions.append(solutions)

    tick = time.time()
    print "-----> Mask took %i. Writing to disk." % (tick-tock)


    output = np.zeros((1, len(fidl)))
    snrs = np.zeros((1, len(fidl)))
    sdout= np.zeros((1, len(fidl)))
    itout= np.zeros((1, len(fidl)))


    # the barset [bs] is used for determining object position
    x, x, bs = IO.readmosfits(barset_file, options)
    

    for i_slit in xrange(len(solutions)):
        solution = all_solutions[0][i_slit]
        header = EPS[0].copy()
        obj = header['OBJECT']

        target_name = bs.ssl[-(i_slit+1)]['Target_Name']
        header['OBJECT'] = target_name

        pixel_dist = np.float(bs.ssl[-(i_slit+1)]['Target_to_center_of_slit_distance'])/0.18

        pixel_dist -= solution['offset']

        ll = solution["lambda"]

        header["wat0_001"] = "system=world"
        header["wat1_001"] = "wtype=linear"
        header["wat2_001"] = "wtype=linear"
        header["dispaxis"] = 1
        header["dclog1"] = "Transform"
        header["dc-flag"] = 0
        header["ctype1"] = "AWAV"
        header["cunit1"] = "Angstrom"
        header["crval1"] = ll[0]
        header["crval2"] = -solution["eps_img"].shape[0]/2 - pixel_dist
        header["crpix1"] = 1
        header["crpix2"] = 1
        header["cdelt1"] = 1
        header["cdelt2"] = 1
        header["cname1"] = "angstrom"
        header["cname2"] = "pixel"
        header["cd1_1"] = ll[1]-ll[0]
        header["cd1_2"] = 0
        header["cd2_1"] = 0
        header["cd2_2"] = 1


        S = output.shape

        img = solution["eps_img"]
        std = solution["sd_img"]
        tms = solution["itime_img"]


        for i_solution in xrange(1,len(all_solutions)):
            print "Combining solution %i" %i_solution
            solution = all_solutions[i_solution][i_slit]
            img += solution["eps_img"]
            std += solution["sd_img"]
            tms += solution["itime_img"]

        output = np.append(output, img, 0)
        output = np.append(output, np.nan*np.zeros((3,S[1])), 0)
        snrs = np.append(snrs, img*tms/std, 0)
        snrs = np.append(snrs, np.nan*np.zeros((3,S[1])), 0)
        sdout = np.append(sdout, std, 0)
        sdout = np.append(sdout, np.nan*np.zeros((3,S[1])), 0)
        itout = np.append(itout, tms, 0)
        itout = np.append(itout, np.nan*np.zeros((3,S[1])), 0)

        header['bunit'] = ('electron/second', 'electron power')
        IO.writefits(img, maskname,
            "{0}_{1}_{2}_eps.fits".format(maskname, band, target_name), options,
            overwrite=True, header=header, lossy_compress=False)

        header['bunit'] = ('electron/second', 'sigma/itime')
        IO.writefits(std/tms, maskname,
            "{0}_{1}_{2}_sig.fits".format(maskname, band, target_name), options,
            overwrite=True, header=header, lossy_compress=False)

        header['bunit'] = ('second', 'exposure time')
        IO.writefits(tms, maskname,
            "{0}_{1}_{2}_itime.fits".format(maskname, band, target_name), options,
            overwrite=True, header=header, lossy_compress=False)

        header['bunit'] = ('', 'SNR')
        IO.writefits(img*tms/std, maskname,
            "{0}_{1}_{2}_snrs.fits".format(maskname, band, target_name), options,
            overwrite=True, header=header, lossy_compress=False)

    header = EPS[0].copy()
    header["wat0_001"] = "system=world"
    header["wat1_001"] = "wtype=linear"
    header["wat2_001"] = "wtype=linear"
    header["dispaxis"] = 1
    header["dclog1"] = "Transform"
    header["dc-flag"] = 0
    header["ctype1"] = "AWAV"
    header["cunit1"] = ("Angstrom", 'Start wavelength')
    header["crval1"] = ll[0]
    header["crval2"] = 1
    header["crpix1"] = 1
    header["crpix2"] = 1
    header["cdelt1"] = 1
    header["cdelt2"] = 1
    header["cname1"] = "angstrom"
    header["cname2"] = "pixel"
    header["cd1_1"] = (ll[1]-ll[0], 'Angstrom/pixel')
    header["cd1_2"] = 0
    header["cd2_1"] = 0
    header["cd2_2"] = 1


    header["bunit"] = "ELECTRONS/SECOND"
    IO.writefits(output, maskname, "{0}_{1}_eps.fits".format(maskname,
        band), options, overwrite=True, header=header,
        lossy_compress=False)

    header["bunit"] = ""
    IO.writefits(snrs, maskname, "{0}_{1}_snrs.fits".format(maskname,
        band), options, overwrite=True, header=header,
        lossy_compress=False)

    header["bunit"] = "ELECTRONS/SECOND"
    IO.writefits(sdout/itout, maskname, "{0}_{1}_sig.fits".format(maskname,
        band), options, overwrite=True, header=header,
        lossy_compress=False)

    header["bunit"] = "SECOND"
    IO.writefits(itout, maskname, "{0}_{1}_itime.fits".format(maskname,
        band), options, overwrite=True, header=header,
        lossy_compress=False)
def handle_rectification(maskname, in_files, wavename, band_pass, files, options,
        commissioning_shift=3.0, target='default'):
    '''Handle slit rectification and coaddition.

    Args:
        maskname: The mask name string
        in_files: List of stacked spectra in electron per second. Will look
            like ['electrons_Offset_1.5.txt.fits', 'electrons_Offset_-1.5.txt.fits']
        wavename: path (relative or full) to the wavelength stack file, string
        band_pass: Band pass name, string
        barset_file: Path to a mosfire fits file containing the full set of
            FITS extensions for the barset. It can be any file in the list
            of science files.
    Returns:
        None

    Writes files:
        [maskname]_[band]_[object name]_eps.fits --
            The rectified, background subtracted, stacked eps spectrum
        [maskname]_[band]_[object name]_sig.fits --
            Rectified, background subtracted, stacked weight spectrum (STD/itime)
        [maskname]_[band]_[object_name]_itime.fits
            Rectified, CRR stacked integration time spectrum
        [maskname]_[band]_[object_name]_snrs.fits
            Rectified signal to noise spectrum
    '''

    global edges, dats, vars, itimes, shifts, lambdas, band, fidl, all_shifts
    band = band_pass

    
    dlambda = Wavelength.grating_results(band)

    hpp = Filters.hpp[band]
    fidl = np.arange(hpp[0], hpp[1], dlambda)

    lambdas = IO.readfits(wavename, options)

    if np.any(lambdas[1].data < 0) or np.any(lambdas[1].data > 29000):
        info("***********WARNING ***********")
        info("The file {0} may not be a wavelength file.".format(wavename))
        info("Check before proceeding.")
        info("***********WARNING ***********")

    edges, meta = IO.load_edges(maskname, band, options)
    shifts = []

    posnames = []
    postoshift = {}
    
    for file in in_files:

        info(":: "+str(file))
        II = IO.read_drpfits(maskname, file, options)

        off = np.array((II[0]["decoff"], II[0]["raoff"]),dtype=np.float64)
        if "yoffset" in II[0]:
            off = -II[0]["yoffset"]
        else:
            # Deal with data taken during commissioning
            if II[0]["frameid"] == 'A': off = 0.0
            else: off = commissioning_shift

        try: off0
        except: off0 = off

        shift = off - off0

        shifts.append(shift)
        posnames.append(II[0]["frameid"])
        postoshift[II[0]['frameid']] = shift
    
        info("Position {0} shift: {1:2.2f} as".format(off, shift))
    # this is to deal with cases in which we want to rectify one single file
    if len(set(posnames)) is 1:
        plans = [['A']]
    else:
        plans = Background.guess_plan_from_positions(set(posnames))

    all_shifts = []
    for plan in plans:
        to_append = []
        for pos in plan:
            to_append.append(postoshift[pos])

        all_shifts.append(to_append)

    # Reverse the elements in all_shifts to deal with an inversion
    all_shifts.reverse()

    theBPM = IO.badpixelmask()

    all_solutions = []
    cntr = 0

    if target is 'default':
        outname = maskname
    else:
        outname = target

    for plan in plans:
        if len(plan) is 1:
            p0 = 'A'
            p1 = 'B'
        else:
            p0 = plan[0].replace("'", "p")
            p1 = plan[1].replace("'", "p")
        suffix = "%s-%s" % (p0,p1)
        info("Handling plan %s" % suffix)
        fname = "bsub_{0}_{1}_{2}.fits".format(outname,band,suffix)
        EPS = IO.read_drpfits(maskname, fname, options)
        EPS[1] = np.ma.masked_array(EPS[1], theBPM, fill_value=0)

        fname = "var_{0}_{1}_{2}.fits".format(outname, band, suffix)
        VAR = IO.read_drpfits(maskname, fname, options)
        VAR[1] = np.ma.masked_array(VAR[1], theBPM, fill_value=np.inf)

        fname = "itime_{0}_{1}_{2}.fits".format(outname, band, suffix)
        ITIME = IO.read_drpfits(maskname, fname, options)
        ITIME[1] = np.ma.masked_array(ITIME[1], theBPM, fill_value=0)


        dats = EPS
        vars = VAR
        itimes = ITIME

        EPS[0]["ORIGFILE"] = fname

        tock = time.time()
        sols = range(len(edges)-1,-1,-1)

        shifts = all_shifts[cntr]
        cntr += 1
        p = Pool()
        solutions = p.map(handle_rectification_helper, sols)
        p.close()

        all_solutions.append(solutions)

    tick = time.time()
    info("-----> Mask took %i. Writing to disk." % (tick-tock))


    output = np.zeros((1, len(fidl)))
    snrs = np.zeros((1, len(fidl)))
    sdout= np.zeros((1, len(fidl)))
    itout= np.zeros((1, len(fidl)))


    # the barset [bs] is used for determining object position
    files = IO.list_file_to_strings(files)
    info("Using "+str(files[0])+" for slit configuration.")
    x, x, bs = IO.readmosfits(files[0], options)
    

    for i_slit in xrange(len(solutions)):
        solution = all_solutions[0][i_slit]
        header = EPS[0].copy()
        obj = header['OBJECT']

        target_name = bs.ssl[-(i_slit+1)]['Target_Name']
        header['OBJECT'] = target_name

        pixel_dist = np.float(bs.ssl[-(i_slit+1)]['Target_to_center_of_slit_distance'])/0.18

        pixel_dist -= solution['offset']

        ll = solution["lambda"]

        header["wat0_001"] = "system=world"
        header["wat1_001"] = "wtype=linear"
        header["wat2_001"] = "wtype=linear"
        header["dispaxis"] = 1
        header["dclog1"] = "Transform"
        header["dc-flag"] = 0
        header["ctype1"] = "AWAV"
        header["cunit1"] = "Angstrom"
        header["crval1"] = ll[0]
        header["crval2"] = -solution["eps_img"].shape[0]/2 - pixel_dist
        header["crpix1"] = 1
        header["crpix2"] = 1
        #remove redundant CDELTi due to wavelength issues with ds9
        #see: https://github.com/Keck-DataReductionPipelines/MosfireDRP/issues/44
        #header["cdelt1"] = 1
        #header["cdelt2"] = 1
        header["cname1"] = "angstrom"
        header["cname2"] = "pixel"
        header["cd1_1"] = ll[1]-ll[0]
        header["cd1_2"] = 0
        header["cd2_1"] = 0
        header["cd2_2"] = 1
        try:
            header["BARYCORR"]= (lambdas[0]['BARYCORR'],lambdas[0].comments['BARYCORR'])
        except KeyError:
            warning( "Barycentric corrections not applied to the wavelength solution")
            pass
        

        S = output.shape

        img = solution["eps_img"]
        std = solution["sd_img"]
        tms = solution["itime_img"]


        for i_solution in xrange(1,len(all_solutions)):
            info("Combining solution %i" %i_solution)
            solution = all_solutions[i_solution][i_slit]
            img += solution["eps_img"]
            std += solution["sd_img"]
            tms += solution["itime_img"]
        #print "adding in quadrature"
        
        output = np.append(output, img, 0)
        output = np.append(output, np.nan*np.zeros((3,S[1])), 0)
        snrs = np.append(snrs, img*tms/std, 0)
        snrs = np.append(snrs, np.nan*np.zeros((3,S[1])), 0)
        sdout = np.append(sdout, std, 0)
        sdout = np.append(sdout, np.nan*np.zeros((3,S[1])), 0)
        itout = np.append(itout, tms, 0)
        itout = np.append(itout, np.nan*np.zeros((3,S[1])), 0)

        header['bunit'] = ('electron/second', 'electron power')
        IO.writefits(img, maskname,
            "{0}_{1}_{2}_eps.fits".format(outname, band, target_name), options,
            overwrite=True, header=header, lossy_compress=False)

        header['bunit'] = ('electron/second', 'sigma/itime')
        IO.writefits(std/tms, maskname,
            "{0}_{1}_{2}_sig.fits".format(outname, band, target_name), options,
            overwrite=True, header=header, lossy_compress=False)

        header['bunit'] = ('second', 'exposure time')
        IO.writefits(tms, maskname,
            "{0}_{1}_{2}_itime.fits".format(outname, band, target_name), options,
            overwrite=True, header=header, lossy_compress=False)

        header['bunit'] = ('', 'SNR')
        IO.writefits(img*tms/std, maskname,
            "{0}_{1}_{2}_snrs.fits".format(outname, band, target_name), options,
            overwrite=True, header=header, lossy_compress=False)

    header = EPS[0].copy()
    header["wat0_001"] = "system=world"
    header["wat1_001"] = "wtype=linear"
    header["wat2_001"] = "wtype=linear"
    header["dispaxis"] = 1
    header["dclog1"] = "Transform"
    header["dc-flag"] = 0
    header["ctype1"] = "AWAV"
    header["cunit1"] = ("Angstrom", 'Start wavelength')
    header["crval1"] = ll[0]
    header["crval2"] = 1
    header["crpix1"] = 1
    header["crpix2"] = 1
    #remove redundant CDELTi due to wavelength issues with ds9
    #see: https://github.com/Keck-DataReductionPipelines/MosfireDRP/issues/44
    #header["cdelt1"] = 1
    #header["cdelt2"] = 1
    header["cname1"] = "angstrom"
    header["cname2"] = "pixel"
    header["cd1_1"] = (ll[1]-ll[0], 'Angstrom/pixel')
    header["cd1_2"] = 0
    header["cd2_1"] = 0
    header["cd2_2"] = 1
    try:
        header["BARYCORR"]= (lambdas[0]['BARYCORR'],lambdas[0].comments['BARYCORR'])
    except KeyError:
        warning( "Barycentric corrections not applied to the wavelength solution")
        pass


    header["bunit"] = "ELECTRONS/SECOND"
    info("############ Final reduced file: {0}_{1}_eps.fits".format(outname,band))
    IO.writefits(output, maskname, "{0}_{1}_eps.fits".format(outname,
        band), options, overwrite=True, header=header,
        lossy_compress=False)

    header["bunit"] = ""
    IO.writefits(snrs, maskname, "{0}_{1}_snrs.fits".format(outname,
        band), options, overwrite=True, header=header,
        lossy_compress=False)

    header["bunit"] = "ELECTRONS/SECOND"
    IO.writefits(sdout/itout, maskname, "{0}_{1}_sig.fits".format(outname,
        band), options, overwrite=True, header=header,
        lossy_compress=False)

    header["bunit"] = "SECOND"
    IO.writefits(itout, maskname, "{0}_{1}_itime.fits".format(outname,
        band), options, overwrite=True, header=header,
        lossy_compress=False)
Exemple #4
0
    import pyfits as pf
np.seterr(all='ignore')
flatops = Options.flat
waveops = Options.wavelength

#Driver file automatically generated on Sat Jul 25 17:33:42 2015
#For questions and comments, email [email protected], submit a ticket on the ticketing system, or contact Luca Rizzi @ WMKO

maskname = 'maskname'
band = 'band'

#Set noninteractive to True to autofit wavelenth solution instead of manually fitting.
noninteractiveflag=False
obsfiles=['Offset_1.25.txt','Offset_-1.25.txt']

Flats.handle_flats('Flat.txt', maskname, band, flatops)

Wavelength.imcombine(obsfiles, maskname, band, waveops)
Wavelength.fit_lambda_interactively(maskname, band, obsfiles,waveops, noninteractive=noninteractiveflag)
Wavelength.fit_lambda(maskname, band, obsfiles, obsfiles,waveops)
Wavelength.apply_lambda_simple(maskname, band, obsfiles, waveops)

# modify this variable to point to the correct wavelength file created on the previous step
Wavelength_file = 'lambda_solution_wave_stack_H_m141130_0323-0338.fits'

Background.handle_background(obsfiles,Wavelength_file,maskname,band,waveops)

redfiles = ["eps_" + file + ".fits" for file in obsfiles]
Rectify.handle_rectification(maskname, redfiles,Wavelength_file,band,obsfiles,waveops)

Exemple #5
0
longslit = {"yrange": [[1062, 1188], [887, 1010]], "row_position": 0, "mode": "long2pos"}
Flats.handle_flats("Flat.txt", maskname, band, flatops, longslit=longslit)

# in this case, we are using the argon lines.
# replace this with neon=['Ne.txt'] if you prefer to use Ne, and edit the following lines accordingly
argon = ["Ar.txt"]
Wavelength.imcombine(argon, maskname, band, waveops)
Wavelength.fit_lambda_interactively(maskname, band, argon, waveops, longslit=longslit, argon=True, bypass=bypassflag)
Wavelength.fit_lambda(maskname, band, argon, argon, waveops, longslit=longslit)
Wavelength.apply_lambda_simple(maskname, band, argon, waveops, longslit=longslit, smooth=True)

# make sure you use the correct wavelength file generated before
Wavelength_file = "lambda_solution_wave_stack_H_m150428_0091-0091.fits"

# narrow
Background.handle_background(obsfiles_posAnarrow, Wavelength_file, maskname, band, waveops, target=target_posAnarrow)
Background.handle_background(obsfiles_posCnarrow, Wavelength_file, maskname, band, waveops, target=target_posCnarrow)
# wide
Background.handle_background(obsfiles_posAwide, Wavelength_file, maskname, band, waveops, target=target_posAwide)
Background.handle_background(obsfiles_posCwide, Wavelength_file, maskname, band, waveops, target=target_posCwide)

# narrow
redfiles = ["eps_" + file + ".fits" for file in obsfiles_posAnarrow]
Rectify.handle_rectification(
    maskname, redfiles, Wavelength_file, band, obsfiles_posAnarrow, waveops, target=target_posAnarrow
)
redfiles = ["eps_" + file + ".fits" for file in obsfiles_posCnarrow]
Rectify.handle_rectification(
    maskname, redfiles, Wavelength_file, band, obsfiles_posCnarrow, waveops, target=target_posCnarrow
)
# wide
# Change the bad pixel mask path
# Options.path_bpm = "/scr2/mosfire/badpixels/badpix_18may2012.fits"

# Change if False to if True when you want to execute that step
# On interactive step, make sure you attempt to quit&save after fitting one
# slit!
if False: Flats.handle_flats(flatnames, maskname, band, flatops)
if False: Wavelength.imcombine(wavenames1, maskname, band, wavlops)
if False: Wavelength.imcombine(wavenames2, maskname, band, wavlops)

# only one interactive fit is needed
if False: Wavelength.fit_lambda_interactively(maskname, band, wavenames1,
        wavlops)

#                               mask     band  to fit       guess      options
if False: Wavelength.fit_lambda(maskname, band, wavenames1, wavenames1, wavlops)
if False: Wavelength.fit_lambda(maskname, band, wavenames2, wavenames1, wavlops)

if False: Wavelength.apply_lambda_simple(maskname, band, wavenames1, wavlops)
if False: Wavelength.apply_lambda_simple(maskname, band, wavenames2, wavlops)

As = As1[:]
Bs = Bs1[:]
As.extend(As2)
Bs.extend(Bs2)
if True: Background.handle_background(As, Bs, wavenames1, maskname, band, wavlops)
if True: Rectify.handle_rectification(maskname, ["A", "B"], wavenames1, band,
        wavlops)