Exemple #1
0
def apply_flat(scifilename, maskname, band):
    ''' Divides the contents of scifilename by the flat field and
        overwrites scifilename with the same file divided by the flat

        Args:
            scifilename: Path to science file name.
            maskname: The mask name
            band: The filter bands

        Results:
            Overwrites scifilename where the data contents of the file
                are divided by the pixel flat
    '''

    flat = IO.load_flat(maskname, band, {})
    flat_data = flat[1].filled(1.0)

    header, data = IO.readfits(scifilename)

    print("Applying flat to file {0}".format(scifilename))
    IO.writefits(data / flat_data,
                 maskname,
                 scifilename, {},
                 header=header,
                 overwrite=True)
Exemple #2
0
def imcombine(filelist, maskname, fname, options, sum_type):
    """ combine the images in file list into fname.

    Sum type:
        rate -- filelist is in cnt/s
        ivar-rate -- filelist is in s/cnt
        snr-rate -- filelist is in SNR
    """

    ARR = None
    hdr = None
    i = 1

    itime = 0

    for file in filelist:

        this_hdr, img = IO.readfits(file)
        cards = this_hdr.ascardlist()

        thisitime = this_hdr["truitime"]
        itime += thisitime

        if ARR is None:
            ARR = np.zeros(img.shape)

        if sum_type == "rate":
            ARR += img * thisitime
        if sum_type == "ivar-rate":
            ARR += thisitime / img
        if sum_type == "snr-rate":
            ARR += img * thisitime

        if hdr is None:
            hdr = this_hdr
        hdr.update("fno%2.2i" % i, file, "--")
        for card in cards:
            key, value, comment = (card.key, card.value, card.comment)

            if hdr.has_key(key) and hdr[key] != value:
                key = key + ("_img%2.2i" % i)

            if len(key) > 8:
                key = "HIERARCH " + key

            try:
                hdr.update(key, value, comment)
            except ValueError:
                pass

    hdr.update("itime", itime, "Itime for %i rectified images" % len(filelist))
    if sum_type == "rate":
        ARR /= itime
    if sum_type == "ivar-rate":
        ARR = itime / ARR
    if sum_type == "snr-rate":
        ARR /= itime

    IO.writefits(ARR, maskname, fname, options, header=hdr, overwrite=True, lossy_compress=True)
Exemple #3
0
def imcombine(filelist, maskname, fname, options, sum_type):
    ''' combine the images in file list into fname.

    Sum type:
        rate -- filelist is in cnt/s
        ivar-rate -- filelist is in s/cnt
        snr-rate -- filelist is in SNR
    '''

    ARR = None
    hdr = None
    i = 1

    itime = 0

    for file in filelist:

        this_hdr, img = IO.readfits(file)
        cards = this_hdr.ascardlist()

        thisitime = this_hdr['truitime']
        itime += thisitime

        if ARR is None: ARR = np.zeros(img.shape)

        if sum_type == 'rate': ARR += img * thisitime
        if sum_type == 'ivar-rate': ARR += thisitime / img
        if sum_type == 'snr-rate': ARR += img * thisitime

        if hdr is None:
            hdr = this_hdr
        hdr["fno%2.2i" % i] = (file, "--")
        for card in cards:
            key, value, comment = (card.key, card.value, card.comment)

            if hdr.has_key(key) and hdr[key] != value:
                key = key + ("_img%2.2i" % i)

            if len(key) > 8: key = 'HIERARCH ' + key

            try:
                hdr[key] = (value, comment)
            except ValueError:
                pass

    hdr['itime'] = (itime, 'Itime for %i rectified images' % len(filelist))
    if sum_type == 'rate': ARR /= itime
    if sum_type == 'ivar-rate': ARR = itime / ARR
    if sum_type == 'snr-rate': ARR /= itime

    IO.writefits(ARR,
                 maskname,
                 fname,
                 options,
                 header=hdr,
                 overwrite=True,
                 lossy_compress=True)
Exemple #4
0
def rectify(dname, lamdat, A, B, maskname, band, wavoptions, longoptions):

    header, data = IO.readfits(dname)
    raw_img = data * Detector.gain / header['TRUITIME']

    dlam = Wavelength.grating_results(band)
    hpp = np.array(Filters.hpp[band])
    ll_fid = np.arange(hpp[0], hpp[1], dlam)

    rectified = np.zeros((2048, len(ll_fid)))

    from scipy.interpolate import interp1d

    for i in xrange(2048):
        ll = lamdat[i, :]
        ss = raw_img[i, :]
        ok = np.isfinite(ll) & np.isfinite(ss) & (ll < hpp[1]) & (ll > hpp[0])

        if len(np.where(ok)[0]) < 30:
            continue

        f = interp1d(ll[ok], ss[ok], bounds_error=False)
        rectified[i, :] = f(ll_fid)

    header.update("wat0_001", "system=world")
    header.update("wat1_001", "wtype=linear")
    header.update("wat2_001", "wtype=linear")
    header.update("dispaxis", 1)
    header.update("dclog1", "Transform")
    header.update("dc-flag", 0)
    header.update("ctype1", "AWAV")
    header.update("cunit1", "Angstrom")
    header.update("crval1", ll_fid[0])
    header.update("crval2", 0)
    header.update("crpix1", 1)
    header.update("crpix2", 1)
    header.update("cdelt1", 1)
    header.update("cdelt2", 1)
    header.update("cname1", "angstrom")
    header.update("cname2", "pixel")
    header.update("cd1_1", dlam)
    header.update("cd1_2", 0)
    header.update("cd2_1", 0)
    header.update("cd2_2", 1)

    header.update("object", "rectified [eps]")
    IO.writefits(rectified,
                 maskname,
                 "rectified_%s" % (dname),
                 wavoptions,
                 header=header,
                 overwrite=True,
                 lossy_compress=True)
def rectify(dname, lamdat, A, B, maskname, band, wavoptions, 
        longoptions):

    header, data = IO.readfits(dname)
    raw_img = data * Detector.gain / header['TRUITIME']

    dlam = Wavelength.grating_results(band)
    hpp = np.array(Filters.hpp[band]) 
    ll_fid = np.arange(hpp[0], hpp[1], dlam)

    rectified = np.zeros((2048, len(ll_fid)))

    from scipy.interpolate import interp1d

    for i in xrange(2048):
        ll = lamdat[i,:]
        ss = raw_img[i,:]
        ok = np.isfinite(ll) & np.isfinite(ss) & (ll < hpp[1]) & (ll >
                hpp[0])

        if len(np.where(ok)[0]) < 30:
            continue

        f = interp1d(ll[ok], ss[ok], bounds_error=False)
        rectified[i,:] = f(ll_fid)

    header.update("wat0_001", "system=world")
    header.update("wat1_001", "wtype=linear")
    header.update("wat2_001", "wtype=linear")
    header.update("dispaxis", 1)
    header.update("dclog1", "Transform")
    header.update("dc-flag", 0)
    header.update("ctype1", "AWAV")
    header.update("cunit1", "Angstrom")
    header.update("crval1", ll_fid[0])
    header.update("crval2", 0)
    header.update("crpix1", 1)
    header.update("crpix2", 1)
    header.update("cdelt1", 1)
    header.update("cdelt2", 1)
    header.update("cname1", "angstrom")
    header.update("cname2", "pixel")
    header.update("cd1_1", dlam)
    header.update("cd1_2", 0)
    header.update("cd2_1", 0)
    header.update("cd2_2", 1)


    header.update("object", "rectified [eps]")
    IO.writefits(rectified, maskname, "rectified_%s" % (dname), 
        wavoptions, header=header, overwrite=True, lossy_compress=True)
def apply_flat(scifilename, maskname, band):
    ''' Divides the contents of scifilename by the flat field and
        overwrites scifilename with the same file divided by the flat

        Args:
            scifilename: Path to science file name.
            maskname: The mask name
            band: The filter bands

        Results:
            Overwrites scifilename where the data contents of the file
                are divided by the pixel flat
    '''

    
    flat = IO.load_flat(maskname, band, {})
    flat_data = flat[1].filled(1.0)

    header, data = IO.readfits(scifilename)
    
    print("Applying flat to file {0}".format(scifilename))
    IO.writefits(data/flat_data, maskname, scifilename, {}, header=header,
        overwrite=True)
def imcombine(files, maskname, options, flat, outname=None, shifts=None,
    extension=None):
    '''
    From a list of files it imcombine returns the imcombine of several values.
    The imcombine code also estimates the readnoise ad RN/sqrt(numreads) so
    that the variance per frame is equal to (ADU + RN^2) where RN is computed
    in ADUs.

    Arguments:
        files[]: list of full path to files to combine
        maskname: Name of mask
        options: Options dictionary
        flat[2048x2048]: Flat field (values should all be ~ 1.0)
        outname: If set, will write (see notes below for details)
            eps_[outname].fits: electron/sec file
            itimes_[outname].fits: integration time
            var_[outname].fits: Variance files
        shifts[len(files)]: If set, will "roll" each file by the 
            amount in the shifts vector in pixels. This argument
            is used when telescope tracking is poor. If you need
            to use this, please notify Keck staff about poor 
            telescope tracking.

    Returns 6-element tuple:
        header: The combined header
        electrons [2048x2048]:  e- (in e- units)
        var [2048x2048]: electrons + RN**2 (in e-^2 units)
        bs: The MOSFIRE.Barset instance
        itimes [2048x2048]: itimes (in s units)
        Nframe: The number of frames that contribute to the summed
            arrays above. If Nframe > 5 I use the sigma-clipping
            Cosmic Ray Rejection tool. If Nframe < 5 then I drop
            the max/min elements.

    Notes:

        header -- fits header
        ADUs -- The mean # of ADUs per frame
        var -- the Variance [in adu] per frame. 
        bs -- Barset
        itimes -- The _total_ integration time in second
        Nframe -- The number of frames in a stack.

        
        Thus the number of electron per second is derived as: 
            e-/sec = (ADUs * Gain / Flat) * (Nframe/itimes)

        The total number of electrons is:
            el = ADUs * Gain * Nframe


    '''

    ADUs = np.zeros((len(files), 2048, 2048))
    itimes = np.zeros((len(files), 2048, 2048))
    prevssl = None
    prevmn = None
    patternid = None
    maskname = None

    header = None

    if shifts is None:
        shifts = np.zeros(len(files))

    warnings.filterwarnings('ignore')
    for i in xrange(len(files)):
        fname = files[i]
        thishdr, data, bs = IO.readmosfits(fname, options, extension=extension)
        itimes[i,:,:] = thishdr["truitime"]

        base = os.path.basename(fname).rstrip(".fits")
        fnum = int(base.split("_")[1])
        
        if shifts[i] == 0:
            ADUs[i,:,:] = data.filled(0.0) / flat
        else:
            ADUs[i,:,:] = np.roll(data.filled(0.0) / flat, np.int(shifts[i]), axis=0)

        ''' Construct Header'''
        if header is None:
            header = thishdr

        header["imfno%3.3i" % (fnum)] =  (fname, "img%3.3i file name" % fnum)

        map(lambda x: rem_header_key(header, x), ["CTYPE1", "CTYPE2", "WCSDIM",
            "CD1_1", "CD1_2", "CD2_1", "CD2_2", "LTM1_1", "LTM2_2", "WAT0_001",
            "WAT1_001", "WAT2_001", "CRVAL1", "CRVAL2", "CRPIX1", "CRPIX2",
            "RADECSYS"])

        for card in header.cards:
            if card == '': continue
            key,val,comment = card
            
            if key in thishdr:
                if val != thishdr[key]:
                    newkey = key + ("_img%2.2i" % fnum)
                    try: header[newkey.rstrip()] = (thishdr[key], comment)
                    except: pass

        ''' Now handle error checking'''

        if maskname is not None:
            if thishdr["maskname"] != maskname:
                raise Exception("File %s uses mask '%s' but the stack is of '%s'" %
                    (fname, thishdr["maskname"], maskname))

        maskname = thishdr["maskname"]
            
        if thishdr["aborted"]:
            raise Exception("Img '%s' was aborted and should not be used" %
                    fname)

        if prevssl is not None:
            if len(prevssl) != len(bs.ssl):
                # todo Improve these checks
                raise Exception("The stack of input files seems to be of "
                        "different masks")
        prevssl = bs.ssl

        if patternid is not None:
            if patternid != thishdr["frameid"]:
                raise Exception("The stack should be of '%s' frames only, but "
                        "the current image is a '%s' frame." % (patternid, 
                            thishdr["frameid"]))

        patternid = thishdr["frameid"]


        if maskname is not None:
            if maskname != thishdr["maskname"]:
                raise Exception("The stack should be of CSU mask '%s' frames "
                        "only but contains a frame of '%s'." % (maskname,
                        thishdr["maskname"]))

        maskname = thishdr["maskname"]

        if thishdr["BUNIT"] != "ADU per coadd":
            raise Exception("The units of '%s' are not in ADU per coadd and "
                    "this violates an assumption of the DRP. Some new code " 
                    "is needed in the DRP to handle the new units of "
                    "'%s'." % (fname, thishdr["BUNIT"]))

        ''' Error checking is complete'''
        print "%s %s[%s]/%s: %5.1f s,  Shift: %i px" % (fname, maskname, patternid,
            header['filter'], np.mean(itimes[i]), shifts[i])

    warnings.filterwarnings('always')

    # the electrons and el_per_sec arrays are:
    #   [2048, 2048, len(files)] and contain values for
    # each individual frame that is being combined.
    # These need to be kept here for CRR reasons.
    electrons = np.array(ADUs) * Detector.gain 
    el_per_sec = electrons / itimes

    output = np.zeros((2048, 2048))
    exptime = np.zeros((2048, 2048))

    numreads = header["READS0"]
    RN_adu = Detector.RN / np.sqrt(numreads) / Detector.gain
    RN = Detector.RN / np.sqrt(numreads)

    # Cosmic ray rejection code begins here. This code construction the
    # electrons and itimes arrays.
    if len(files) >= 9:
        print "Sigclip CRR"
        srt = np.argsort(electrons, axis=0, kind='quicksort')
        shp = el_per_sec.shape
        sti = np.ogrid[0:shp[0], 0:shp[1], 0:shp[2]]

        electrons = electrons[srt, sti[1], sti[2]]
        el_per_sec = el_per_sec[srt, sti[1], sti[2]]
        itimes = itimes[srt, sti[1], sti[2]]

        # Construct the mean and standard deviation by dropping the top and bottom two 
        # electron fluxes. This is temporary.
        mean = np.mean(el_per_sec[2:-2,:,:], axis = 0)
        std = np.std(el_per_sec[2:-2,:,:], axis = 0)

        drop = np.where( (el_per_sec > (mean+std*4)) | (el_per_sec < (mean-std*4)) )
        print "dropping: ", len(drop[0])
        electrons[drop] = 0.0
        itimes[drop] = 0.0

        electrons = np.sum(electrons, axis=0)
        itimes = np.sum(itimes, axis=0)
        Nframe = len(files) 

    elif len(files) > 5:
        print "WARNING: Drop min/max CRR"
        srt = np.argsort(el_per_sec,axis=0)
        shp = el_per_sec.shape
        sti = np.ogrid[0:shp[0], 0:shp[1], 0:shp[2]]

        electrons = electrons[srt, sti[1], sti[2]]
        itimes = itimes[srt, sti[1], sti[2]]

        electrons = np.sum(electrons[1:-1,:,:], axis=0)
        itimes = np.sum(itimes[1:-1,:,:], axis=0)

        Nframe = len(files) - 2

    else:
        print "WARNING: CRR through median filtering"
        for i in xrange(len(files)):
            el = electrons[i,:,:]
            it = itimes[i,:,:]
            el_mf = scipy.signal.medfilt(el, 5)

            bad = np.abs(el - el_mf) / np.abs(el) > 10.0
            el[bad] = 0.0
            it[bad] = 0.0

            electrons[i,:,:] = el
            itimes[i,:,:] = it

        electrons = np.sum(electrons, axis=0)
        itimes = np.sum(itimes, axis=0)
        Nframe = len(files) 


    ''' Now handle variance '''
    numreads = header["READS0"]
    RN_adu = Detector.RN / np.sqrt(numreads) / Detector.gain
    RN = Detector.RN / np.sqrt(numreads)

    var = (electrons + RN**2) 

    ''' Now mask out bad pixels '''
    electrons[data.mask] = np.nan
    var[data.mask] = np.inf

    if "RN" in header: raise Exception("RN Already populated in header")
    header['RN'] = ("%1.3f" , "Read noise in e-")
    header['NUMFRM'] = (Nframe, 'Typical number of frames in stack')

    if outname is not None:
        header['BUNIT'] = 'ELECTRONS/SECOND'
        IO.writefits(np.float32(electrons/itimes), maskname, "eps_%s" % (outname),
                options, header=header, overwrite=True)

        # Update itimes after division in order to not introduce nans
        itimes[data.mask] = 0.0

        header['BUNIT'] = 'ELECTRONS^2'
        IO.writefits(var, maskname, "var_%s" % (outname),
                options, header=header, overwrite=True, lossy_compress=True)

        header['BUNIT'] = 'SECOND'
        IO.writefits(np.float32(itimes), maskname, "itimes_%s" % (outname),
                options, header=header, overwrite=True, lossy_compress=True)

    return header, electrons, var, bs, itimes, Nframe
def write_outputs(solutions, itime, header, maskname, band_name, plan, options):
    sky_sub_out = np.zeros((2048, 2048), dtype=np.float)
    sky_model_out = np.zeros((2048, 2048), dtype=np.float)

    p0 = plan[0].replace("'", "p")
    p1 = plan[1].replace("'", "p")
    suffix = "%s-%s" % (p0,p1)
    xroi = slice(0,2048)

    for sol in solutions:
        if not sol["ok"]: 
            continue

        yroi = slice(sol["bottom"], sol["top"])
        sky_sub_out[yroi, xroi] = sol["output"]
        sky_model_out[yroi, xroi] = sol["model"]
    
    header['BUNIT'] = 'SECOND'
    IO.writefits(itime, maskname, "itime_%s_%s_%s.fits" % (maskname, band,
        suffix), options, header=header, overwrite=True, lossy_compress=True)


    header['BUNIT'] = 'ELECTRONS/SECOND'
    IO.writefits(data, maskname, "sub_%s_%s_%s.fits" % (maskname, band,
        suffix), options, header=header, overwrite=True, lossy_compress=True)

    header['BUNIT'] = 'ELECTRONS/SECOND'
    IO.writefits(sky_sub_out, maskname, "bsub_%s_%s_%s.fits" % (maskname, band,
        suffix), options, header=header, overwrite=True)

    header['BUNIT'] = 'ELECTRONS'
    IO.writefits(Var, maskname, "var_%s_%s_%s.fits" % (maskname, band,
        suffix), options, header=header, overwrite=True, lossy_compress=True)

    header['BUNIT'] = 'ELECTRONS/SECOND'
    IO.writefits(sky_model_out, maskname, "bmod_%s_%s_%s.fits" % (maskname,
        band, suffix), options, header=header, overwrite=True,
        lossy_compress=True)

    '''Now create rectified solutions'''
    dlam = Wavelength.grating_results(band)
    hpp = np.array(Filters.hpp[band]) 
    ll_fid = np.arange(hpp[0], hpp[1], dlam)
    nspec = len(ll_fid)


    rectified = np.zeros((2048, nspec), dtype=np.float32)
    rectified_var = np.zeros((2048, nspec), dtype=np.float32)
    rectified_itime = np.zeros((2048, nspec), dtype=np.float32)

    from scipy.interpolate import interp1d
    for i in xrange(2048):
        ll = lam[1][i,:]
        ss = sky_sub_out[i,:]

        ok = np.isfinite(ll) & np.isfinite(ss) & (ll < hpp[1]) & (ll >
                hpp[0])

        if len(np.where(ok)[0]) < 100:
            continue
        f = interp1d(ll[ok], ss[ok], bounds_error=False)
        rectified[i,:] = f(ll_fid)

        f = interp1d(ll, Var[i,:], bounds_error=False)
        rectified_var[i,:] = f(ll_fid)

        f = interp1d(ll, itime[i,:], bounds_error=False)
        rectified_itime[i,:] = f(ll_fid)

    header["wat0_001"] = "system=world"
    header["wat1_001"] = "type=linear"
    header["wat2_001"] = "type=linear"
    header["dispaxis"] = 1
    header["dclog1"] = "Transform"
    header["dc-flag"] = 0
    header["type1"] = "AWAV"
    header["cunit1"] = "Angstrom"
    header["crval1"] = (ll_fid[0], "Starting wavelength Angstrom")
    header["crval2"] = 0
    header["crpix1"] = 1
    header["crpix2"] = 1
    header["cdelt1"] = 1
    header["cdelt2"] = 1
    header["cname1"] = "angstrom"
    header["cname2"] = "pixel"
    header["cd1_1"] = (dlam, "Angstrom/pixel")
    header["cd1_2"] = 0
    header["cd2_1"] = 0
    header["cd2_2"] = (1, "pixel/pixel")

    IO.writefits(rectified_itime, maskname,
        "%s_rectified_itime_%s_%s.fits" % (maskname, band_name,
        suffix), options, header=header, overwrite=True, lossy_compress=True)

    IO.writefits(rectified, maskname, "%s_rectified_%s_%s.fits" % (maskname,
        band_name, suffix), options, header=header, overwrite=True,
        lossy_compress=True)

    IO.writefits(rectified_var, maskname, "%s_rectified_var_%s_%s.fits" %
        (maskname, band_name, suffix), options, header=header, overwrite=True,
        lossy_compress=True)

    IO.writefits(rectified*rectified_itime/np.sqrt(rectified_var), maskname,
        "%s_rectified_sn_%s_%s.fits" % (maskname, band_name,
        suffix), options, header=header, overwrite=True, lossy_compress=True)
Exemple #9
0
def handle_rectification(maskname, in_files, wavename, band_pass, barset_file, options,
        commissioning_shift=3.0):
    '''Handle slit rectification and coaddition.

    Args:
        maskname: The mask name string
        in_files: List of stacked spectra in electron per second. Will look
            like ['electrons_Offset_1.5.txt.fits', 'electrons_Offset_-1.5.txt.fits']
        wavename: path (relative or full) to the wavelength stack file, string
        band_pass: Band pass name, string
        barset_file: Path to a mosfire fits file containing the full set of
            FITS extensions for the barset. It can be any file in the list
            of science files.
    Returns:
        None

    Writes files:
        [maskname]_[band]_[object name]_eps.fits --
            The rectified, background subtracted, stacked eps spectrum
        [maskname]_[band]_[object name]_sig.fits --
            Rectified, background subtracted, stacked weight spectrum (STD/itime)
        [maskname]_[band]_[object_name]_itime.fits
            Rectified, CRR stacked integration time spectrum
        [maskname]_[band]_[object_name]_snrs.fits
            Rectified signal to noise spectrum
    '''

    global edges, dats, vars, itimes, shifts, lambdas, band, fidl, all_shifts
    band = band_pass

    
    dlambda = Wavelength.grating_results(band)

    hpp = Filters.hpp[band]
    fidl = np.arange(hpp[0], hpp[1], dlambda)

    lambdas = IO.readfits(wavename, options)

    if np.any(lambdas[1].data < 0) or np.any(lambdas[1].data > 29000):
        print "***********WARNING ***********"
        print "The file {0} may not be a wavelength file.".format(wavename)
        print "Check before proceeding."
        print "***********WARNING ***********"

    edges, meta = IO.load_edges(maskname, band, options)
    shifts = []

    posnames = []
    postoshift = {}
    
    for file in in_files:

        print ":: ", file
        II = IO.read_drpfits(maskname, file, options)

        off = np.array((II[0]["decoff"], II[0]["raoff"]),dtype=np.float64)
        if "yoffset" in II[0]:
            off = -II[0]["yoffset"]
        else:
            # Deal with data taken during commissioning
            if II[0]["frameid"] == 'A': off = 0.0
            else: off = commissioning_shift

        try: off0
        except: off0 = off

        shift = off - off0

        shifts.append(shift)
        posnames.append(II[0]["frameid"])
        postoshift[II[0]['frameid']] = shift
    
        print "Position {0} shift: {1:2.2f} as".format(off, shift)
    

    plans = Background.guess_plan_from_positions(set(posnames))

    all_shifts = []
    for plan in plans:
        to_append = []
        for pos in plan:
            to_append.append(postoshift[pos])

        all_shifts.append(to_append)

    # Reverse the elements in all_shifts to deal with an inversion
    all_shifts.reverse()

    theBPM = IO.badpixelmask()

    all_solutions = []
    cntr = 0
    for plan in plans:
        p0 = plan[0].replace("'", "p")
        p1 = plan[1].replace("'", "p")
        suffix = "%s-%s" % (p0,p1)
        print "Handling plan %s" % suffix
        fname = "bsub_{0}_{1}_{2}.fits".format(maskname,band,suffix)
        EPS = IO.read_drpfits(maskname, fname, options)
        EPS[1] = np.ma.masked_array(EPS[1], theBPM, fill_value=0)

        fname = "var_{0}_{1}_{2}.fits".format(maskname, band, suffix)
        VAR = IO.read_drpfits(maskname, fname, options)
        VAR[1] = np.ma.masked_array(VAR[1], theBPM, fill_value=np.inf)

        fname = "itime_{0}_{1}_{2}.fits".format(maskname, band, suffix)
        ITIME = IO.read_drpfits(maskname, fname, options)
        ITIME[1] = np.ma.masked_array(ITIME[1], theBPM, fill_value=0)


        dats = EPS
        vars = VAR
        itimes = ITIME

        EPS[0]["ORIGFILE"] = fname

        tock = time.time()
        sols = range(len(edges)-1,-1,-1)

        shifts = all_shifts[cntr]
        cntr += 1
        p = Pool()
        solutions = p.map(handle_rectification_helper, sols)
        #solutions = map(handle_rectification_helper, [15])
        p.close()

        all_solutions.append(solutions)

    tick = time.time()
    print "-----> Mask took %i. Writing to disk." % (tick-tock)


    output = np.zeros((1, len(fidl)))
    snrs = np.zeros((1, len(fidl)))
    sdout= np.zeros((1, len(fidl)))
    itout= np.zeros((1, len(fidl)))


    # the barset [bs] is used for determining object position
    x, x, bs = IO.readmosfits(barset_file, options)
    

    for i_slit in xrange(len(solutions)):
        solution = all_solutions[0][i_slit]
        header = EPS[0].copy()
        obj = header['OBJECT']

        target_name = bs.ssl[-(i_slit+1)]['Target_Name']
        header['OBJECT'] = target_name

        pixel_dist = np.float(bs.ssl[-(i_slit+1)]['Target_to_center_of_slit_distance'])/0.18

        pixel_dist -= solution['offset']

        ll = solution["lambda"]

        header["wat0_001"] = "system=world"
        header["wat1_001"] = "wtype=linear"
        header["wat2_001"] = "wtype=linear"
        header["dispaxis"] = 1
        header["dclog1"] = "Transform"
        header["dc-flag"] = 0
        header["ctype1"] = "AWAV"
        header["cunit1"] = "Angstrom"
        header["crval1"] = ll[0]
        header["crval2"] = -solution["eps_img"].shape[0]/2 - pixel_dist
        header["crpix1"] = 1
        header["crpix2"] = 1
        header["cdelt1"] = 1
        header["cdelt2"] = 1
        header["cname1"] = "angstrom"
        header["cname2"] = "pixel"
        header["cd1_1"] = ll[1]-ll[0]
        header["cd1_2"] = 0
        header["cd2_1"] = 0
        header["cd2_2"] = 1


        S = output.shape

        img = solution["eps_img"]
        std = solution["sd_img"]
        tms = solution["itime_img"]


        for i_solution in xrange(1,len(all_solutions)):
            print "Combining solution %i" %i_solution
            solution = all_solutions[i_solution][i_slit]
            img += solution["eps_img"]
            std += solution["sd_img"]
            tms += solution["itime_img"]

        output = np.append(output, img, 0)
        output = np.append(output, np.nan*np.zeros((3,S[1])), 0)
        snrs = np.append(snrs, img*tms/std, 0)
        snrs = np.append(snrs, np.nan*np.zeros((3,S[1])), 0)
        sdout = np.append(sdout, std, 0)
        sdout = np.append(sdout, np.nan*np.zeros((3,S[1])), 0)
        itout = np.append(itout, tms, 0)
        itout = np.append(itout, np.nan*np.zeros((3,S[1])), 0)

        header['bunit'] = ('electron/second', 'electron power')
        IO.writefits(img, maskname,
            "{0}_{1}_{2}_eps.fits".format(maskname, band, target_name), options,
            overwrite=True, header=header, lossy_compress=False)

        header['bunit'] = ('electron/second', 'sigma/itime')
        IO.writefits(std/tms, maskname,
            "{0}_{1}_{2}_sig.fits".format(maskname, band, target_name), options,
            overwrite=True, header=header, lossy_compress=False)

        header['bunit'] = ('second', 'exposure time')
        IO.writefits(tms, maskname,
            "{0}_{1}_{2}_itime.fits".format(maskname, band, target_name), options,
            overwrite=True, header=header, lossy_compress=False)

        header['bunit'] = ('', 'SNR')
        IO.writefits(img*tms/std, maskname,
            "{0}_{1}_{2}_snrs.fits".format(maskname, band, target_name), options,
            overwrite=True, header=header, lossy_compress=False)

    header = EPS[0].copy()
    header["wat0_001"] = "system=world"
    header["wat1_001"] = "wtype=linear"
    header["wat2_001"] = "wtype=linear"
    header["dispaxis"] = 1
    header["dclog1"] = "Transform"
    header["dc-flag"] = 0
    header["ctype1"] = "AWAV"
    header["cunit1"] = ("Angstrom", 'Start wavelength')
    header["crval1"] = ll[0]
    header["crval2"] = 1
    header["crpix1"] = 1
    header["crpix2"] = 1
    header["cdelt1"] = 1
    header["cdelt2"] = 1
    header["cname1"] = "angstrom"
    header["cname2"] = "pixel"
    header["cd1_1"] = (ll[1]-ll[0], 'Angstrom/pixel')
    header["cd1_2"] = 0
    header["cd2_1"] = 0
    header["cd2_2"] = 1


    header["bunit"] = "ELECTRONS/SECOND"
    IO.writefits(output, maskname, "{0}_{1}_eps.fits".format(maskname,
        band), options, overwrite=True, header=header,
        lossy_compress=False)

    header["bunit"] = ""
    IO.writefits(snrs, maskname, "{0}_{1}_snrs.fits".format(maskname,
        band), options, overwrite=True, header=header,
        lossy_compress=False)

    header["bunit"] = "ELECTRONS/SECOND"
    IO.writefits(sdout/itout, maskname, "{0}_{1}_sig.fits".format(maskname,
        band), options, overwrite=True, header=header,
        lossy_compress=False)

    header["bunit"] = "SECOND"
    IO.writefits(itout, maskname, "{0}_{1}_itime.fits".format(maskname,
        band), options, overwrite=True, header=header,
        lossy_compress=False)
Exemple #10
0
def write_outputs(solutions, itime, header, maskname, band_name, plan,
                  options):
    sky_sub_out = np.zeros((2048, 2048), dtype=np.float)
    sky_model_out = np.zeros((2048, 2048), dtype=np.float)

    p0 = plan[0].replace("'", "p")
    p1 = plan[1].replace("'", "p")
    suffix = "%s-%s" % (p0, p1)
    xroi = slice(0, 2048)

    for sol in solutions:
        if not sol["ok"]:
            continue

        yroi = slice(sol["bottom"], sol["top"])
        sky_sub_out[yroi, xroi] = sol["output"]
        sky_model_out[yroi, xroi] = sol["model"]

    header['BUNIT'] = 'SECOND'
    IO.writefits(itime,
                 maskname,
                 "itime_%s_%s_%s.fits" % (maskname, band, suffix),
                 options,
                 header=header,
                 overwrite=True,
                 lossy_compress=True)

    header['BUNIT'] = 'ELECTRONS/SECOND'
    IO.writefits(data,
                 maskname,
                 "sub_%s_%s_%s.fits" % (maskname, band, suffix),
                 options,
                 header=header,
                 overwrite=True,
                 lossy_compress=True)

    header['BUNIT'] = 'ELECTRONS/SECOND'
    IO.writefits(sky_sub_out,
                 maskname,
                 "bsub_%s_%s_%s.fits" % (maskname, band, suffix),
                 options,
                 header=header,
                 overwrite=True)

    header['BUNIT'] = 'ELECTRONS'
    IO.writefits(Var,
                 maskname,
                 "var_%s_%s_%s.fits" % (maskname, band, suffix),
                 options,
                 header=header,
                 overwrite=True,
                 lossy_compress=True)

    header['BUNIT'] = 'ELECTRONS/SECOND'
    IO.writefits(sky_model_out,
                 maskname,
                 "bmod_%s_%s_%s.fits" % (maskname, band, suffix),
                 options,
                 header=header,
                 overwrite=True,
                 lossy_compress=True)
    '''Now create rectified solutions'''
    dlam = Wavelength.grating_results(band)
    hpp = np.array(Filters.hpp[band])
    ll_fid = np.arange(hpp[0], hpp[1], dlam)
    nspec = len(ll_fid)

    rectified = np.zeros((2048, nspec), dtype=np.float32)
    rectified_var = np.zeros((2048, nspec), dtype=np.float32)
    rectified_itime = np.zeros((2048, nspec), dtype=np.float32)

    from scipy.interpolate import interp1d
    for i in xrange(2048):
        ll = lam[1][i, :]
        ss = sky_sub_out[i, :]

        ok = np.isfinite(ll) & np.isfinite(ss) & (ll < hpp[1]) & (ll > hpp[0])

        if len(np.where(ok)[0]) < 100:
            continue
        f = interp1d(ll[ok], ss[ok], bounds_error=False)
        rectified[i, :] = f(ll_fid)

        f = interp1d(ll, Var[i, :], bounds_error=False)
        rectified_var[i, :] = f(ll_fid)

        f = interp1d(ll, itime[i, :], bounds_error=False)
        rectified_itime[i, :] = f(ll_fid)

    header["wat0_001"] = "system=world"
    header["wat1_001"] = "type=linear"
    header["wat2_001"] = "type=linear"
    header["dispaxis"] = 1
    header["dclog1"] = "Transform"
    header["dc-flag"] = 0
    header["type1"] = "AWAV"
    header["cunit1"] = "Angstrom"
    header["crval1"] = (ll_fid[0], "Starting wavelength Angstrom")
    header["crval2"] = 0
    header["crpix1"] = 1
    header["crpix2"] = 1
    header["cdelt1"] = 1
    header["cdelt2"] = 1
    header["cname1"] = "angstrom"
    header["cname2"] = "pixel"
    header["cd1_1"] = (dlam, "Angstrom/pixel")
    header["cd1_2"] = 0
    header["cd2_1"] = 0
    header["cd2_2"] = (1, "pixel/pixel")

    IO.writefits(rectified_itime,
                 maskname,
                 "%s_rectified_itime_%s_%s.fits" %
                 (maskname, band_name, suffix),
                 options,
                 header=header,
                 overwrite=True,
                 lossy_compress=True)

    IO.writefits(rectified,
                 maskname,
                 "%s_rectified_%s_%s.fits" % (maskname, band_name, suffix),
                 options,
                 header=header,
                 overwrite=True,
                 lossy_compress=True)

    IO.writefits(rectified_var,
                 maskname,
                 "%s_rectified_var_%s_%s.fits" % (maskname, band_name, suffix),
                 options,
                 header=header,
                 overwrite=True,
                 lossy_compress=True)

    IO.writefits(rectified * rectified_itime / np.sqrt(rectified_var),
                 maskname,
                 "%s_rectified_sn_%s_%s.fits" % (maskname, band_name, suffix),
                 options,
                 header=header,
                 overwrite=True,
                 lossy_compress=True)
Exemple #11
0
def imcombine(files,
              maskname,
              options,
              flat,
              outname=None,
              shifts=None,
              extension=None):
    '''
    From a list of files it imcombine returns the imcombine of several values.
    The imcombine code also estimates the readnoise ad RN/sqrt(numreads) so
    that the variance per frame is equal to (ADU + RN^2) where RN is computed
    in ADUs.

    Arguments:
        files[]: list of full path to files to combine
        maskname: Name of mask
        options: Options dictionary
        flat[2048x2048]: Flat field (values should all be ~ 1.0)
        outname: If set, will write (see notes below for details)
            eps_[outname].fits: electron/sec file
            itimes_[outname].fits: integration time
            var_[outname].fits: Variance files
        shifts[len(files)]: If set, will "roll" each file by the 
            amount in the shifts vector in pixels. This argument
            is used when telescope tracking is poor. If you need
            to use this, please notify Keck staff about poor 
            telescope tracking.

    Returns 6-element tuple:
        header: The combined header
        electrons [2048x2048]:  e- (in e- units)
        var [2048x2048]: electrons + RN**2 (in e-^2 units)
        bs: The MOSFIRE.Barset instance
        itimes [2048x2048]: itimes (in s units)
        Nframe: The number of frames that contribute to the summed
            arrays above. If Nframe > 5 I use the sigma-clipping
            Cosmic Ray Rejection tool. If Nframe < 5 then I drop
            the max/min elements.

    Notes:

        header -- fits header
        ADUs -- The mean # of ADUs per frame
        var -- the Variance [in adu] per frame. 
        bs -- Barset
        itimes -- The _total_ integration time in second
        Nframe -- The number of frames in a stack.

        
        Thus the number of electron per second is derived as: 
            e-/sec = (ADUs * Gain / Flat) * (Nframe/itimes)

        The total number of electrons is:
            el = ADUs * Gain * Nframe


    '''

    ADUs = np.zeros((len(files), 2048, 2048))
    itimes = np.zeros((len(files), 2048, 2048))
    prevssl = None
    prevmn = None
    patternid = None
    maskname = None

    header = None

    if shifts is None:
        shifts = np.zeros(len(files))

    warnings.filterwarnings('ignore')
    for i in xrange(len(files)):
        fname = files[i]
        thishdr, data, bs = IO.readmosfits(fname, options, extension=extension)
        itimes[i, :, :] = thishdr["truitime"]

        base = os.path.basename(fname).rstrip(".fits")
        fnum = int(base.split("_")[1])

        if shifts[i] == 0:
            ADUs[i, :, :] = data.filled(0.0) / flat
        else:
            ADUs[i, :, :] = np.roll(data.filled(0.0) / flat,
                                    np.int(shifts[i]),
                                    axis=0)
        ''' Construct Header'''
        if header is None:
            header = thishdr

        header["imfno%3.3i" % (fnum)] = (fname, "img%3.3i file name" % fnum)

        map(lambda x: rem_header_key(header, x), [
            "CTYPE1", "CTYPE2", "WCSDIM", "CD1_1", "CD1_2", "CD2_1", "CD2_2",
            "LTM1_1", "LTM2_2", "WAT0_001", "WAT1_001", "WAT2_001", "CRVAL1",
            "CRVAL2", "CRPIX1", "CRPIX2", "RADECSYS"
        ])

        for card in header.cards:
            if card == '': continue
            key, val, comment = card

            if key in thishdr:
                if val != thishdr[key]:
                    newkey = key + ("_img%2.2i" % fnum)
                    try:
                        header[newkey.rstrip()] = (thishdr[key], comment)
                    except:
                        pass
        ''' Now handle error checking'''

        if maskname is not None:
            if thishdr["maskname"] != maskname:
                raise Exception(
                    "File %s uses mask '%s' but the stack is of '%s'" %
                    (fname, thishdr["maskname"], maskname))

        maskname = thishdr["maskname"]

        if thishdr["aborted"]:
            raise Exception("Img '%s' was aborted and should not be used" %
                            fname)

        if prevssl is not None:
            if len(prevssl) != len(bs.ssl):
                # todo Improve these checks
                raise Exception("The stack of input files seems to be of "
                                "different masks")
        prevssl = bs.ssl

        if patternid is not None:
            if patternid != thishdr["frameid"]:
                raise Exception("The stack should be of '%s' frames only, but "
                                "the current image is a '%s' frame." %
                                (patternid, thishdr["frameid"]))

        patternid = thishdr["frameid"]

        if maskname is not None:
            if maskname != thishdr["maskname"]:
                raise Exception("The stack should be of CSU mask '%s' frames "
                                "only but contains a frame of '%s'." %
                                (maskname, thishdr["maskname"]))

        maskname = thishdr["maskname"]

        if thishdr["BUNIT"] != "ADU per coadd":
            raise Exception(
                "The units of '%s' are not in ADU per coadd and "
                "this violates an assumption of the DRP. Some new code "
                "is needed in the DRP to handle the new units of "
                "'%s'." % (fname, thishdr["BUNIT"]))
        ''' Error checking is complete'''
        print "%s %s[%s]/%s: %5.1f s,  Shift: %i px" % (
            fname, maskname, patternid, header['filter'], np.mean(
                itimes[i]), shifts[i])

    warnings.filterwarnings('always')

    # the electrons and el_per_sec arrays are:
    #   [2048, 2048, len(files)] and contain values for
    # each individual frame that is being combined.
    # These need to be kept here for CRR reasons.
    electrons = np.array(ADUs) * Detector.gain
    el_per_sec = electrons / itimes

    output = np.zeros((2048, 2048))
    exptime = np.zeros((2048, 2048))

    numreads = header["READS0"]
    RN_adu = Detector.RN / np.sqrt(numreads) / Detector.gain
    RN = Detector.RN / np.sqrt(numreads)

    # Cosmic ray rejection code begins here. This code construction the
    # electrons and itimes arrays.
    if len(files) >= 9:
        print "Sigclip CRR"
        srt = np.argsort(electrons, axis=0, kind='quicksort')
        shp = el_per_sec.shape
        sti = np.ogrid[0:shp[0], 0:shp[1], 0:shp[2]]

        electrons = electrons[srt, sti[1], sti[2]]
        el_per_sec = el_per_sec[srt, sti[1], sti[2]]
        itimes = itimes[srt, sti[1], sti[2]]

        # Construct the mean and standard deviation by dropping the top and bottom two
        # electron fluxes. This is temporary.
        mean = np.mean(el_per_sec[2:-2, :, :], axis=0)
        std = np.std(el_per_sec[2:-2, :, :], axis=0)

        drop = np.where((el_per_sec > (mean + std * 4))
                        | (el_per_sec < (mean - std * 4)))
        print "dropping: ", len(drop[0])
        electrons[drop] = 0.0
        itimes[drop] = 0.0

        electrons = np.sum(electrons, axis=0)
        itimes = np.sum(itimes, axis=0)
        Nframe = len(files)

    elif len(files) > 5:
        print "WARNING: Drop min/max CRR"
        srt = np.argsort(el_per_sec, axis=0)
        shp = el_per_sec.shape
        sti = np.ogrid[0:shp[0], 0:shp[1], 0:shp[2]]

        electrons = electrons[srt, sti[1], sti[2]]
        itimes = itimes[srt, sti[1], sti[2]]

        electrons = np.sum(electrons[1:-1, :, :], axis=0)
        itimes = np.sum(itimes[1:-1, :, :], axis=0)

        Nframe = len(files) - 2

    else:
        print "WARNING: CRR through median filtering"
        for i in xrange(len(files)):
            el = electrons[i, :, :]
            it = itimes[i, :, :]
            el_mf = scipy.signal.medfilt(el, 5)

            bad = np.abs(el - el_mf) / np.abs(el) > 10.0
            el[bad] = 0.0
            it[bad] = 0.0

            electrons[i, :, :] = el
            itimes[i, :, :] = it

        electrons = np.sum(electrons, axis=0)
        itimes = np.sum(itimes, axis=0)
        Nframe = len(files)
    ''' Now handle variance '''
    numreads = header["READS0"]
    RN_adu = Detector.RN / np.sqrt(numreads) / Detector.gain
    RN = Detector.RN / np.sqrt(numreads)

    var = (electrons + RN**2)
    ''' Now mask out bad pixels '''
    electrons[data.mask] = np.nan
    var[data.mask] = np.inf

    if "RN" in header: raise Exception("RN Already populated in header")
    header['RN'] = ("%1.3f", "Read noise in e-")
    header['NUMFRM'] = (Nframe, 'Typical number of frames in stack')

    if outname is not None:
        header['BUNIT'] = 'ELECTRONS/SECOND'
        IO.writefits(np.float32(electrons / itimes),
                     maskname,
                     "eps_%s" % (outname),
                     options,
                     header=header,
                     overwrite=True)

        # Update itimes after division in order to not introduce nans
        itimes[data.mask] = 0.0

        header['BUNIT'] = 'ELECTRONS^2'
        IO.writefits(var,
                     maskname,
                     "var_%s" % (outname),
                     options,
                     header=header,
                     overwrite=True,
                     lossy_compress=True)

        header['BUNIT'] = 'SECOND'
        IO.writefits(np.float32(itimes),
                     maskname,
                     "itimes_%s" % (outname),
                     options,
                     header=header,
                     overwrite=True,
                     lossy_compress=True)

    return header, electrons, var, bs, itimes, Nframe
def handle_rectification(maskname, in_files, wavename, band_pass, files, options,
        commissioning_shift=3.0, target='default'):
    '''Handle slit rectification and coaddition.

    Args:
        maskname: The mask name string
        in_files: List of stacked spectra in electron per second. Will look
            like ['electrons_Offset_1.5.txt.fits', 'electrons_Offset_-1.5.txt.fits']
        wavename: path (relative or full) to the wavelength stack file, string
        band_pass: Band pass name, string
        barset_file: Path to a mosfire fits file containing the full set of
            FITS extensions for the barset. It can be any file in the list
            of science files.
    Returns:
        None

    Writes files:
        [maskname]_[band]_[object name]_eps.fits --
            The rectified, background subtracted, stacked eps spectrum
        [maskname]_[band]_[object name]_sig.fits --
            Rectified, background subtracted, stacked weight spectrum (STD/itime)
        [maskname]_[band]_[object_name]_itime.fits
            Rectified, CRR stacked integration time spectrum
        [maskname]_[band]_[object_name]_snrs.fits
            Rectified signal to noise spectrum
    '''

    global edges, dats, vars, itimes, shifts, lambdas, band, fidl, all_shifts
    band = band_pass

    
    dlambda = Wavelength.grating_results(band)

    hpp = Filters.hpp[band]
    fidl = np.arange(hpp[0], hpp[1], dlambda)

    lambdas = IO.readfits(wavename, options)

    if np.any(lambdas[1].data < 0) or np.any(lambdas[1].data > 29000):
        info("***********WARNING ***********")
        info("The file {0} may not be a wavelength file.".format(wavename))
        info("Check before proceeding.")
        info("***********WARNING ***********")

    edges, meta = IO.load_edges(maskname, band, options)
    shifts = []

    posnames = []
    postoshift = {}
    
    for file in in_files:

        info(":: "+str(file))
        II = IO.read_drpfits(maskname, file, options)

        off = np.array((II[0]["decoff"], II[0]["raoff"]),dtype=np.float64)
        if "yoffset" in II[0]:
            off = -II[0]["yoffset"]
        else:
            # Deal with data taken during commissioning
            if II[0]["frameid"] == 'A': off = 0.0
            else: off = commissioning_shift

        try: off0
        except: off0 = off

        shift = off - off0

        shifts.append(shift)
        posnames.append(II[0]["frameid"])
        postoshift[II[0]['frameid']] = shift
    
        info("Position {0} shift: {1:2.2f} as".format(off, shift))
    # this is to deal with cases in which we want to rectify one single file
    if len(set(posnames)) is 1:
        plans = [['A']]
    else:
        plans = Background.guess_plan_from_positions(set(posnames))

    all_shifts = []
    for plan in plans:
        to_append = []
        for pos in plan:
            to_append.append(postoshift[pos])

        all_shifts.append(to_append)

    # Reverse the elements in all_shifts to deal with an inversion
    all_shifts.reverse()

    theBPM = IO.badpixelmask()

    all_solutions = []
    cntr = 0

    if target is 'default':
        outname = maskname
    else:
        outname = target

    for plan in plans:
        if len(plan) is 1:
            p0 = 'A'
            p1 = 'B'
        else:
            p0 = plan[0].replace("'", "p")
            p1 = plan[1].replace("'", "p")
        suffix = "%s-%s" % (p0,p1)
        info("Handling plan %s" % suffix)
        fname = "bsub_{0}_{1}_{2}.fits".format(outname,band,suffix)
        EPS = IO.read_drpfits(maskname, fname, options)
        EPS[1] = np.ma.masked_array(EPS[1], theBPM, fill_value=0)

        fname = "var_{0}_{1}_{2}.fits".format(outname, band, suffix)
        VAR = IO.read_drpfits(maskname, fname, options)
        VAR[1] = np.ma.masked_array(VAR[1], theBPM, fill_value=np.inf)

        fname = "itime_{0}_{1}_{2}.fits".format(outname, band, suffix)
        ITIME = IO.read_drpfits(maskname, fname, options)
        ITIME[1] = np.ma.masked_array(ITIME[1], theBPM, fill_value=0)


        dats = EPS
        vars = VAR
        itimes = ITIME

        EPS[0]["ORIGFILE"] = fname

        tock = time.time()
        sols = range(len(edges)-1,-1,-1)

        shifts = all_shifts[cntr]
        cntr += 1
        p = Pool()
        solutions = p.map(handle_rectification_helper, sols)
        p.close()

        all_solutions.append(solutions)

    tick = time.time()
    info("-----> Mask took %i. Writing to disk." % (tick-tock))


    output = np.zeros((1, len(fidl)))
    snrs = np.zeros((1, len(fidl)))
    sdout= np.zeros((1, len(fidl)))
    itout= np.zeros((1, len(fidl)))


    # the barset [bs] is used for determining object position
    files = IO.list_file_to_strings(files)
    info("Using "+str(files[0])+" for slit configuration.")
    x, x, bs = IO.readmosfits(files[0], options)
    

    for i_slit in xrange(len(solutions)):
        solution = all_solutions[0][i_slit]
        header = EPS[0].copy()
        obj = header['OBJECT']

        target_name = bs.ssl[-(i_slit+1)]['Target_Name']
        header['OBJECT'] = target_name

        pixel_dist = np.float(bs.ssl[-(i_slit+1)]['Target_to_center_of_slit_distance'])/0.18

        pixel_dist -= solution['offset']

        ll = solution["lambda"]

        header["wat0_001"] = "system=world"
        header["wat1_001"] = "wtype=linear"
        header["wat2_001"] = "wtype=linear"
        header["dispaxis"] = 1
        header["dclog1"] = "Transform"
        header["dc-flag"] = 0
        header["ctype1"] = "AWAV"
        header["cunit1"] = "Angstrom"
        header["crval1"] = ll[0]
        header["crval2"] = -solution["eps_img"].shape[0]/2 - pixel_dist
        header["crpix1"] = 1
        header["crpix2"] = 1
        #remove redundant CDELTi due to wavelength issues with ds9
        #see: https://github.com/Keck-DataReductionPipelines/MosfireDRP/issues/44
        #header["cdelt1"] = 1
        #header["cdelt2"] = 1
        header["cname1"] = "angstrom"
        header["cname2"] = "pixel"
        header["cd1_1"] = ll[1]-ll[0]
        header["cd1_2"] = 0
        header["cd2_1"] = 0
        header["cd2_2"] = 1
        try:
            header["BARYCORR"]= (lambdas[0]['BARYCORR'],lambdas[0].comments['BARYCORR'])
        except KeyError:
            warning( "Barycentric corrections not applied to the wavelength solution")
            pass
        

        S = output.shape

        img = solution["eps_img"]
        std = solution["sd_img"]
        tms = solution["itime_img"]


        for i_solution in xrange(1,len(all_solutions)):
            info("Combining solution %i" %i_solution)
            solution = all_solutions[i_solution][i_slit]
            img += solution["eps_img"]
            std += solution["sd_img"]
            tms += solution["itime_img"]
        #print "adding in quadrature"
        
        output = np.append(output, img, 0)
        output = np.append(output, np.nan*np.zeros((3,S[1])), 0)
        snrs = np.append(snrs, img*tms/std, 0)
        snrs = np.append(snrs, np.nan*np.zeros((3,S[1])), 0)
        sdout = np.append(sdout, std, 0)
        sdout = np.append(sdout, np.nan*np.zeros((3,S[1])), 0)
        itout = np.append(itout, tms, 0)
        itout = np.append(itout, np.nan*np.zeros((3,S[1])), 0)

        header['bunit'] = ('electron/second', 'electron power')
        IO.writefits(img, maskname,
            "{0}_{1}_{2}_eps.fits".format(outname, band, target_name), options,
            overwrite=True, header=header, lossy_compress=False)

        header['bunit'] = ('electron/second', 'sigma/itime')
        IO.writefits(std/tms, maskname,
            "{0}_{1}_{2}_sig.fits".format(outname, band, target_name), options,
            overwrite=True, header=header, lossy_compress=False)

        header['bunit'] = ('second', 'exposure time')
        IO.writefits(tms, maskname,
            "{0}_{1}_{2}_itime.fits".format(outname, band, target_name), options,
            overwrite=True, header=header, lossy_compress=False)

        header['bunit'] = ('', 'SNR')
        IO.writefits(img*tms/std, maskname,
            "{0}_{1}_{2}_snrs.fits".format(outname, band, target_name), options,
            overwrite=True, header=header, lossy_compress=False)

    header = EPS[0].copy()
    header["wat0_001"] = "system=world"
    header["wat1_001"] = "wtype=linear"
    header["wat2_001"] = "wtype=linear"
    header["dispaxis"] = 1
    header["dclog1"] = "Transform"
    header["dc-flag"] = 0
    header["ctype1"] = "AWAV"
    header["cunit1"] = ("Angstrom", 'Start wavelength')
    header["crval1"] = ll[0]
    header["crval2"] = 1
    header["crpix1"] = 1
    header["crpix2"] = 1
    #remove redundant CDELTi due to wavelength issues with ds9
    #see: https://github.com/Keck-DataReductionPipelines/MosfireDRP/issues/44
    #header["cdelt1"] = 1
    #header["cdelt2"] = 1
    header["cname1"] = "angstrom"
    header["cname2"] = "pixel"
    header["cd1_1"] = (ll[1]-ll[0], 'Angstrom/pixel')
    header["cd1_2"] = 0
    header["cd2_1"] = 0
    header["cd2_2"] = 1
    try:
        header["BARYCORR"]= (lambdas[0]['BARYCORR'],lambdas[0].comments['BARYCORR'])
    except KeyError:
        warning( "Barycentric corrections not applied to the wavelength solution")
        pass


    header["bunit"] = "ELECTRONS/SECOND"
    info("############ Final reduced file: {0}_{1}_eps.fits".format(outname,band))
    IO.writefits(output, maskname, "{0}_{1}_eps.fits".format(outname,
        band), options, overwrite=True, header=header,
        lossy_compress=False)

    header["bunit"] = ""
    IO.writefits(snrs, maskname, "{0}_{1}_snrs.fits".format(outname,
        band), options, overwrite=True, header=header,
        lossy_compress=False)

    header["bunit"] = "ELECTRONS/SECOND"
    IO.writefits(sdout/itout, maskname, "{0}_{1}_sig.fits".format(outname,
        band), options, overwrite=True, header=header,
        lossy_compress=False)

    header["bunit"] = "SECOND"
    IO.writefits(itout, maskname, "{0}_{1}_itime.fits".format(outname,
        band), options, overwrite=True, header=header,
        lossy_compress=False)