Exemple #1
0
def test_vectorize():
    from ManNullRange.manifolds.tools import cvech, cunvech, cvecah, cunvecah
    p = 10
    mat = crandn(p, p)
    mat += mat.T.conjugate()
    v = cvech(mat)
    mat2 = cunvech(v)
    print(check_zero(mat - mat2))

    # check inner product:
    for i in range(p * p):
        v = zeros(p * p)
        v[i] = 1
        h = cunvech(v)
        assert (np.abs(trace(h @ h.T.conjugate()).real - 1) < 1e-10)

    # now do skew
    mat = crandn(p, p)
    mat -= mat.T.conjugate()
    v = cvecah(mat)
    mat2 = cunvecah(v)
    print(check_zero(mat - mat2))

    for i in range(p * p):
        v = zeros(p * p)
        v[i] = 1
        h = cunvecah(v)
        assert (np.abs(trace(h @ h.T.conjugate()).real - 1) < 1e-10)
def test_christ_flat():
    """now test that christofel preserve metrics:
    on the flat space
    d_xi <v M v> = 2 <v M nabla_xi v>
     v = proj(W) @ (aa W + b)
    """
    alpha = randint(1, 10, 2) * .1
    n = 5
    d = 3
    man = ComplexStiefel(n, d, alpha=alpha)
    Y = man.rand()

    xi = man.randvec(Y)
    aa = crandn(n * d, n * d)
    bb = crandn(n * d)

    def v_func_flat(Y):
        return (aa @ Y.reshape(-1) + bb).reshape(n, d)

    vv = v_func_flat(Y)
    dlt = 1e-7
    Ynew = Y + dlt * xi
    vnew = v_func_flat(Ynew)

    val = man.inner(Y, vv, vv)
    valnew = man.inner(Ynew, vnew, vnew)
    d1 = (valnew - val) / dlt
    dv = (vnew - vv) / dlt
    nabla_xi_v = dv + man.g_inv(Y, man.christoffel_form(Y, xi, vv))
    d2 = man.inner(Y, vv, nabla_xi_v)

    print(d1)
    print(2 * d2)
def optim_test():
    m, n, p = (1000, 500, 50)
    # m, n, p = (10, 3, 2)
    # simple function. Distance to a given matrix
    # || S - A||_F^2
    U0, _ = la.qr(crandn(m, p))
    V0, _ = la.qr(crandn(n, p))
    P0 = np.diag(randint(1, 1000, p)*.001)
    A0 = U0 @ P0 @ V0.T.conj()
    A = crandn(m, n)*1e-2 + A0

    alpha = np.array([1, 1])
    gamma = np.array([1, 1])
    print("alpha %s" % str(alpha))

    beta = alpha[1] * .1
    man = ComplexFixedRank(m, n, p, alpha=alpha, beta=beta, gamma=gamma)
    XInit = man.rand()
    opt_pre = solve_dist_with_man(man, A, X0=XInit, maxiter=20)

    beta = alpha[1] * 1
    man = ComplexFixedRank(m, n, p, alpha=alpha, beta=beta, gamma=gamma)
    opt_mid = solve_dist_with_man(man, A, X0=opt_pre, maxiter=20)
    # opt_mid = opt_pre

    beta = alpha[1] * 30
    man = ComplexFixedRank(m, n, p, alpha=alpha, beta=beta, gamma=gamma)
    opt = solve_dist_with_man(man, A, X0=opt_mid, maxiter=50)
    opt_mat = opt.U @ opt.P @ opt.V.T.conj()
    if False:
        print(A0)
        print(opt_mat)
    print(np.max(np.abs(A0-opt_mat)))
Exemple #4
0
def optim_test():
    n, d = (1000, 50)
    # n, d = (10, 3)
    # simple function. Distance to a given matrix
    # || S - A||_F^2
    Y0, _ = np.linalg.qr(crandn(n, d))
    P0 = np.diag(randint(1, 1000, d) * .001)
    A00 = Y0 @ P0 @ Y0.T.conjugate()
    A0 = hsym(A00)
    A = (hsym(crandn(n, n)) * 1e-2 + A0)

    alpha = np.array([1, 1])
    print("alpha %s" % str(alpha))

    beta = alpha[1] * .1
    man = ComplexPositiveSemidefinite(n, d, alpha=alpha, beta=beta)
    XInit = man.rand()
    opt_pre = solve_dist_with_man(man, A, X0=XInit, maxiter=20)

    beta = alpha[1] * 1
    man = ComplexPositiveSemidefinite(n, d, alpha=alpha, beta=beta)
    opt_mid = solve_dist_with_man(man, A, X0=opt_pre, maxiter=20)
    # opt_mid = opt_pre

    beta = alpha[1] * 30
    man = ComplexPositiveSemidefinite(n, d, alpha=alpha, beta=beta)
    opt = solve_dist_with_man(man, A, X0=opt_mid, maxiter=500)
    opt_mat = opt.Y @ opt.P @ opt.Y.T.conjugate()
    if False:
        print(A0)
        print(opt_mat)
    print(np.max(np.abs(A0 - opt_mat)))
def test_christ_flat():
    """now test that christofel preserve metrics:
    on the flat space
    d_xi <v M v> = 2 <v M nabla_xi v>
     v = proj(W) @ (aa W + b)
    """
    dvec = np.array([10, 3, 2, 3])
    p = dvec.shape[0] - 1
    alpha = randint(1, 10, (p, p + 1)) * .1
    man = ComplexFlag(dvec, alpha=alpha)
    Y = man.rand()
    n = man.n
    d = man.d

    xi = man.randvec(Y)
    aa = crandn(n * d, n * d)
    bb = crandn(n * d)

    def v_func_flat(Y):
        return (aa @ Y.reshape(-1) + bb).reshape(n, d)

    vv = v_func_flat(Y)
    dlt = 1e-7
    Ynew = Y + dlt * xi
    vnew = v_func_flat(Ynew)

    val = man.inner(Y, vv, vv)
    valnew = man.inner(Ynew, vnew, vnew)
    d1 = (valnew - val) / dlt
    dv = (vnew - vv) / dlt
    nabla_xi_v = dv + man.g_inv(Y, man.christoffel_form(Y, xi, vv))
    d2 = man.inner(Y, vv, nabla_xi_v)

    print(d1)
    print(2 * d2)
def test_covariance_deriv():
    # now test full:
    # do covariant derivatives
    # check that it works, preseving everything
    n, d = (5, 3)
    alpha = randint(1, 10, 2) * .1
    man = ComplexStiefel(n, d, alpha=alpha)

    Y = man.rand()

    slp = crandn(n * d)
    aa = crandn(n * d, n * d)

    def omg_func(Y):
        return (aa @ Y.reshape(-1) + slp).reshape(n, d)

    xi = man.randvec(Y)

    egrad = omg_func(Y)
    ehess = (aa @ xi.reshape(-1)).reshape(n, d)

    val1 = man.ehess2rhess(Y, egrad, ehess, xi)
    if False:
        val1a = man.ehess2rhess_alt(Y, egrad, ehess, xi)
        print(check_zero(val1 - val1a))

    def rgrad_func(W):
        return man.proj_g_inv(W, omg_func(W))

    if False:
        first = ehess
        a = man.J(Y, man.g_inv(Y, egrad))
        rgrad = man.proj_g_inv(Y, egrad)
        second = -man.D_g(Y, xi, man.g_inv(Y, egrad))
        aout = man.solve_J_g_inv_Jst(Y, a)
        third = -man.proj(Y, man.D_g_inv_Jst(Y, xi, aout))
        fourth = man.christoffel_form(Y, xi, rgrad)
        val1a = man.proj_g_inv(Y, first + second + fourth) + third

    d_xi_rgrad = num_deriv(man, Y, xi, rgrad_func)
    rgrad = man.proj_g_inv(Y, egrad)
    fourth = man.christoffel_form(Y, xi, rgrad)
    val1b = man.proj(Y, d_xi_rgrad) + man.proj_g_inv(Y, fourth)
    print(check_zero(val1 - val1b))
    # nabla_v_xi, dxi, cxxi
    val2a, _, _ = calc_covar_numeric(man, Y, xi, omg_func)
    val2, _, _ = calc_covar_numeric(man, Y, xi, rgrad_func)
    # val2_p = project(prj, val2)
    val2_p = man.proj(Y, val2)
    # print(val1)
    # print(val2_p)
    print(val1 - val2_p)
def testN(man, X):
    m, n, p = (man.m, man.n, man.p)
    B = crandn(m-p, p)
    C = crandn(n-p, p)
    D = crandn(p, p)
    ee = N(man, X, B, C, D)
    print(check_zero(stU(X, ee)))
    print(check_zero(stV(X, ee)))
    print(check_zero(symP(X, ee)))
    print(check_zero(Hz(man, X, ee)))
    nmat = make_N_mat(man, X)
    ee2 = man._unvec(nmat @ np.concatenate(
        [cvec(B), cvec(C), cvec(D)]))
    print(check_zero(man._vec(ee - ee2)))
 def testNTgN(man, X):
     m, n, p = (man.m, man.n, man.p)
     B0 = crandn(m-p, p)
     C0 = crandn(n-p, p)
     D0 = crandn(p, p)
     out1 = NTgN @ np.concatenate(
         [cvec(B0), cvec(C0), cvec(D0)])
     out2a = NTgN_opt(X, B0, C0, D0)
     out2 = np.concatenate(
         [cvec(out2a[0]), cvec(out2a[1]), cvec(out2a[2])])
     print(check_zero(out1-out2))
     out2b = solveNTgN(X, *out2a)
     print(check_zero(out2b[2]-D0))
     print(check_zero(out2b[1]-C0))
     print(check_zero(out2b[0]-B0))
 def rand_vertical():
     oo = crandn(man.p, man.p)
     oo = oo - oo.T.conj()
     return fr_ambient(
         X.U @ oo,
         X.V @ oo,
         -oo @ X.P + X.P @oo)
Exemple #10
0
def test_christ_flat():
    """now test that christofel preserve metrics:
    on the flat space
    d_xi <v M v> = 2 <v M nabla_xi v>
     v = proj(W) @ (aa W + b)
    """
    alpha = randint(1, 10, 2) * .1
    beta = randint(1, 10, 2)[0] * .1
    n = 20
    d = 3
    man = ComplexPositiveSemidefinite(n, d, alpha=alpha, beta=beta)
    S = man.rand()

    xi = man.randvec(S)
    xi = man.randvec(S)
    aa = crandn(n * d, n * d)
    bb = crandn(n * d)
    cc = crandn(d * d, d * d)
    dd = hsym(crandn(d, d))

    def v_func_flat(S):
        # a function from the manifold
        # to ambient
        csp = hsym((cc @ S.P.reshape(-1)).reshape(d, d))

        return psd_ambient((aa @ S.Y.reshape(-1) + bb).reshape(n, d), csp + dd)

    vv = v_func_flat(S)
    dlt = 1e-7
    Snew = psd_point(S.Y + dlt * xi.tY, S.P + dlt * xi.tP)
    vnew = v_func_flat(Snew)

    val = man.inner_product_amb(S, vv)
    valnew = man.inner_product_amb(Snew, vnew)
    d1 = (valnew - val) / dlt
    dv = (vnew - vv).scalar_mul(1 / dlt)
    nabla_xi_v = dv + man.g_inv(S, man.christoffel_form(S, xi, vv))
    nabla_xi_va = dv + man.g_inv(
        S,
        super(ComplexPositiveSemidefinite, man).christoffel_form(S, xi, vv))
    print(check_zero(man._vec(nabla_xi_v) - man._vec(nabla_xi_va)))
    d2 = man.inner(S, vv, nabla_xi_v)

    print(d1)
    print(2 * d2)
def test_chris_vectorfields():
    # now test that it works on embedded metrics
    # we test that D_xi (eta g eta) = 2(eta g nabla_xi eta)
    dvec = np.array([10, 3, 2, 3])
    p = dvec.shape[0] - 1
    alpha = randint(1, 10, (p, p + 1)) * .1
    man = ComplexFlag(dvec, alpha=alpha)
    n = man.n
    d = man.d

    slp = crandn(n * d)
    Y0 = man.rand()
    slpxi = crandn(n * d)

    aa = crandn(n * d, n * d)
    aaxi = crandn(n * d, n * d)

    def v_func(Y):
        return man.proj(Y, (aa @ (Y - Y0).reshape(-1) + slp).reshape(n, d))

    YY = Y0.copy()
    xi = man.proj(YY, slpxi.reshape(n, d))

    nabla_xi_v, dv, cxv = calc_covar_numeric(man, YY, xi, v_func)

    def xi_func(Y):
        return man.proj(Y, (aaxi @ (Y - Y0).reshape(-1) + slpxi).reshape(n, d))

    vv = v_func(YY)

    nabla_v_xi, dxi, cxxi = calc_covar_numeric(man, YY, vv, xi_func)
    diff = nabla_xi_v - nabla_v_xi
    # print(diff)
    # now do Lie bracket:
    dlt = 1e-7
    YnewXi = YY + dlt * xi
    Ynewvv = YY + dlt * vv
    vnewxi = v_func(YnewXi)
    xnewv = xi_func(Ynewvv)
    dxiv = (vnewxi - vv) / dlt
    dvxi = (xnewv - xi) / dlt
    diff2 = man.proj(YY, dxiv - dvxi)
    print(check_zero(diff - diff2))
def test_christ_flat():
    """now test that christofel preserve metrics:
    on the flat space
    d_xi <v M v> = 2 <v M nabla_xi v>
     v = proj(W) @ (aa W + b)
    """
    alpha = randint(1, 10, 2) * .1
    gamma = randint(1, 10, 2) * .1
    beta = randint(1, 10, 2)[0] * .1

    m = 4
    n = 5
    p = 3
    man = ComplexFixedRank(m, n, p, alpha=alpha, beta=beta, gamma=gamma)
    
    S = man.rand()
    
    xi = man.randvec(S)
    aaU = crandn(m*p, m*p)
    bbU = crandn(m*p)

    aaV = crandn(n*p, n*p)
    bbV = crandn(n*p)
    
    cc = crandn(p*p, p*p)
    dd = hsym(crandn(p, p))
        
    def v_func_flat(S):
        # a function from the manifold
        # to ambient
        csp = hsym((cc @ S.P.reshape(-1)).reshape(p, p))
        
        return fr_ambient(
            (aaU @ S.U.reshape(-1) + bbU).reshape(m, p),
            (aaV @ S.V.reshape(-1) + bbV).reshape(n, p),
            csp + dd)

    vv = v_func_flat(S)  # vv is not horizontal
    dlt = 1e-7
    Snew = fr_point(
        S.U + dlt * xi.tU,
        S.V + dlt * xi.tV,
        S.P + dlt * xi.tP)
    vnew = v_func_flat(Snew)

    val = man.inner(S, vv)
    valnew = man.inner(Snew, vnew)
    d1 = (valnew - val)/dlt
    dv = (vnew - vv).scalar_mul(1/dlt)
    nabla_xi_v = dv + man.g_inv(
        S, man.christoffel_form(S, xi, vv))
    # not equal bc vv is not horizontal:
    nabla_xi_va = dv + man.g_inv(
        S, super(ComplexFixedRank, man).christoffel_form(S, xi, vv))
    print(check_zero(man._vec(nabla_xi_v) - man._vec(nabla_xi_va)))
    d2 = man.inner(S, vv, nabla_xi_v)

    print(d1)
    print(2*d2)
Exemple #13
0
def test_chris_vectorfields():
    # now test that it works on embedded metrics
    # we test that D_xi (eta g eta) = 2(eta g nabla_xi eta)
    n, d = (20, 3)
    alpha = randint(1, 10, 2) * .1
    beta = randint(1, 10, 1)[0] * .1
    man = ComplexPositiveSemidefinite(n, d, alpha=alpha, beta=beta)

    S0 = man.rand()
    aa = crandn(n * d, n * d)
    intc = crandn(n * d)
    cc = crandn(d * d, d * d)
    p_intc = hsym(crandn(d, d))

    inct_xi = man._rand_ambient()
    aa_xi = crandn(n * d, n * d)
    cc_xi = crandn(d * d, d * d)

    def v_func(S):
        # a function from the manifold
        # to ambient
        csp = hsym((cc @ (S.P - S0.P).reshape(-1)).reshape(d, d))

        return man.proj(
            S,
            psd_ambient((aa @ (S.Y - S0.Y).reshape(-1) + intc).reshape(n, d),
                        csp + p_intc))

    SS = psd_point(S0.Y, S0.P)
    xi = man.proj(SS, inct_xi)

    nabla_xi_v, dv, cxv = calc_covar_numeric(man, SS, xi, v_func)

    def xi_func(S):
        csp_xi = hsym((cc_xi @ (S.P - S0.P).reshape(-1)).reshape(d, d))
        xi_amb = psd_ambient((aa_xi @ (S.Y - S0.Y).reshape(-1) +
                              inct_xi.tY.reshape(-1)).reshape(n, d),
                             csp_xi + inct_xi.tP)
        return man.proj(S, xi_amb)

    vv = v_func(SS)

    nabla_v_xi, dxi, cxxi = calc_covar_numeric(man, SS, vv, xi_func)
    diff = nabla_xi_v - nabla_v_xi
    print(diff.tY, diff.tP)
    # now do Lie bracket:
    dlt = 1e-7
    SnewXi = psd_point(SS.Y + dlt * xi.tY, SS.P + dlt * xi.tP)
    Snewvv = psd_point(SS.Y + dlt * vv.tY, SS.P + dlt * vv.tP)
    vnewxi = v_func(SnewXi)
    xnewv = xi_func(Snewvv)
    dxiv = (vnewxi - vv).scalar_mul(1 / dlt)
    dvxi = (xnewv - xi).scalar_mul(1 / dlt)
    diff2 = man.proj(SS, dxiv - dvxi)
    print(check_zero(man._vec(diff) - man._vec(diff2)))
Exemple #14
0
def test_lyapunov():
    alpha = randint(1, 10, 2) * .1
    beta = randint(1, 10, 1)[0] * .02
    n = 5
    d = 3
    man = ComplexPositiveSemidefinite(n, d, alpha=alpha, beta=beta)
    S = man.rand()

    P = S.P
    B = crandn(d, d)
    alpha1 = alpha[1]

    def L(X, P):
        Piv = la.inv(P)
        return (alpha1 - 2 * beta) * X + beta * (P @ X @ Piv + Piv @ X @ P)

    X = extended_lyapunov(alpha1, beta, P, B)
    # L(X, P)
    print(check_zero(B - L(X, P)))
def test_rhess_02():
    n, d = (5, 3)
    alpha = randint(1, 10, 2) * .1
    man = ComplexStiefel(n, d, alpha=alpha)

    Y = man.rand()
    UU = make_sym_pos(n)

    def f(Y):
        return rtrace(UU @ Y @ Y.T.conj())

    def df(Y):
        return 2 * UU @ Y

    def ehess_form(Y, xi, eta):
        return 2 * rtrace(UU @ xi @ eta.T.conj())

    def ehess_vec(Y, xi):
        return 2 * UU @ xi

    xxi = crandn(n, d)
    dlt = 1e-8
    Ynew = Y + dlt * xxi
    d1 = (f(Ynew) - f(Y)) / dlt
    d2 = df(Y)
    print(d1 - rtrace(d2 @ xxi.T.conj()))

    eeta = crandn(n, d)

    d1 = rtrace((df(Ynew) - df(Y)) @ eeta.T.conj()) / dlt
    ehess_val = ehess_form(Y, xxi, eeta)
    dv2 = ehess_vec(Y, xxi)
    print(rtrace(dv2 @ eeta.T.conj()))
    print(d1, ehess_val, d1 - ehess_val)

    # now check the formula: ehess = xi (eta_func(f)) - <D_xi eta, df(Y)>
    # promote eta to a vector field.

    m1 = crandn(n, n)
    m2 = crandn(d, d)

    def eta_field(Yin):
        return m1 @ (Yin - Y) @ m2 + eeta

    # xietaf: should go to ehess(xi, eta) + df(Y) @ etafield)
    xietaf = rtrace(
        df(Ynew) @ eta_field(Ynew).T.conj() -
        df(Y) @ eta_field(Y).T.conj()) / dlt
    # appy eta_func to f: should go to tr(m1 @ xxi @ m2 @ df(Y).T.conj())
    Dxietaf = rtrace((eta_field(Ynew) - eta_field(Y)) @ df(Y).T.conj()) / dlt
    # this is ehess. should be same as d1 or ehess_val
    print(xietaf - Dxietaf)
    print(xietaf - Dxietaf - ehess_val)

    # now check: rhess. Need to make sure xi, eta in the tangent space.
    # first compare this with numerical differentiation
    xi1 = man.proj(Y, xxi)
    eta1 = man.proj(Y, eeta)
    egvec = df(Y)
    ehvec = ehess_vec(Y, xi1)
    rhessvec = man.ehess2rhess(Y, egvec, ehvec, xi1)

    # check it numerically:
    def rgrad_func(Y):
        return man.proj_g_inv(Y, df(Y))

    val2, _, _ = calc_covar_numeric(man, Y, xi1, rgrad_func)
    val2_p = man.proj(Y, val2)
    # print(rhessvec)
    # print(val2_p)
    print(check_zero(rhessvec - val2_p))
    rhessval = man.inner(Y, rhessvec, eta1)
    print(man.inner(Y, val2, eta1))
    print(rhessval)

    # check symmetric:
    ehvec_e = ehess_vec(Y, eta1)
    rhessvec_e = man.ehess2rhess(Y, egvec, ehvec_e, eta1)
    rhessval_e = man.inner(Y, rhessvec_e, xi1)
    rhessval_e1 = man.rhess02(Y, xi1, eta1, egvec, ehvec)
    rhessval_e2 = man.rhess02_alt(Y, xi1, eta1, egvec,
                                  rtrace(ehvec @ eta1.T.conj()))
    print(rhessval_e, rhessval_e1, rhessval_e2)

    print('rhessval_e %f ' % rhessval_e)

    # the above computed inner_prod(Nabla_xi Pi * df, eta)
    # in the following check. Extend eta1 to eta_proj
    # (Pi Nabla_hat Pi g_inv df, g eta)
    # = D_xi (Pi g_inv df, g eta) - (Pi g_inv df g Pi Nabla_hat eta)

    def eta_proj(Y):
        return man.proj(Y, eta_field(Y))

    print(check_zero(eta1 - eta_proj(Y)))

    e1 = man.inner(Y, man.proj_g_inv(Y, df(Y)), eta_proj(Y))
    e1a = rtrace(df(Y) @ eta_proj(Y).T.conj())
    print(e1, e1a, e1 - e1a)
    Ynew = Y + xi1 * dlt
    e2 = man.inner(Ynew, man.proj_g_inv(Ynew, df(Ynew)), eta_proj(Ynew))
    e2a = rtrace(df(Ynew) @ eta_proj(Ynew).T.conj())
    print(e2, e2a, e2 - e2a)

    first = (e2 - e1) / dlt
    first1 = rtrace(
        df(Ynew) @ eta_proj(Ynew).T.conj() -
        df(Y) @ eta_proj(Y).T.conj()) / dlt
    print(first - first1)

    val3, _, _ = calc_covar_numeric(man, Y, xi1, eta_proj)
    second = man.inner(Y, man.proj_g_inv(Y, df(Y)), man.proj(Y, val3))
    second2 = man.inner(Y, man.proj_g_inv(Y, df(Y)), val3)
    print(second, second2, second - second2)
    print('same as rhess_val %f' % (first - second))
Exemple #16
0
def test_rhess_02():
    n, d = (50, 3)
    alpha = randint(1, 10, 2) * .1
    beta = randint(1, 10, 2)[0] * .1
    man = ComplexPositiveSemidefinite(n, d, alpha=alpha, beta=beta)

    S = man.rand()
    # simple function. Distance to a given matrix
    # || S - A||_F^2
    A = hsym(crandn(n, n))

    def f(S):
        diff = (A - S.Y @ S.P @ S.Y.T.conjugate())
        return trace(diff @ diff.T.conjugate())

    def df(S):
        return psd_ambient(-4 * A @ S.Y @ S.P,
                           2 * (S.P - S.Y.T.conjugate() @ A @ S.Y))

    def ehess_form(S, xi, eta):
        return (
            trace(-4 * A @ (xi.tY @ S.P + S.Y @ xi.tP) @ eta.tY.T.conjugate())
            + 2 * trace(
                (xi.tP - xi.tY.T.conjugate() @ A @ S.Y -
                 S.Y.T.conjugate() @ A @ xi.tY) @ eta.tP.T.conjugate())).real

    def ehess_vec(S, xi):
        return psd_ambient(
            -4 * A @ (xi.tY @ S.P + S.Y @ xi.tP),
            2 * (xi.tP - xi.tY.T.conjugate() @ A @ S.Y -
                 S.Y.T.conjugate() @ A @ xi.tY))

    xxi = man.randvec(S)
    dlt = 1e-8
    Snew = psd_point(S.Y + dlt * xxi.tY, S.P + dlt * xxi.tP)
    d1 = (f(Snew) - f(S)) / dlt
    d2 = df(S)
    print(d1 - man.base_inner_ambient(d2, xxi))

    eeta = man.randvec(S)

    d1 = man.base_inner_ambient((df(Snew) - df(S)), eeta) / dlt
    ehess_val = ehess_form(S, xxi, eeta)
    dv2 = ehess_vec(S, xxi)
    print(man.base_inner_ambient(dv2, eeta))
    print(d1, ehess_val, d1 - ehess_val)

    # now check the formula: ehess = xi (eta_func(f)) - <D_xi eta, df(Y)>
    # promote eta to a vector field.

    m1 = crandn(n, n)
    m2 = crandn(d, d)
    m_p = crandn(d * d, d * d)

    def eta_field(Sin):
        return man.proj(
            S,
            psd_ambient(m1 @ (Sin.Y - S.Y) @ m2,
                        hsym((m_p @ (Sin.P - S.P).reshape(-1)).reshape(
                            d, d)))) + eeta

    # xietaf: should go to ehess(xi, eta) + df(Y) @ etafield)
    xietaf = (man.base_inner_ambient(df(Snew), eta_field(Snew)) -
              man.base_inner_ambient(df(S), eta_field(S))) / dlt
    # appy eta_func to f: should go to tr(m1 @ xxi @ m2 @ df(Y).T)
    Dxietaf = man.base_inner_ambient(
        (eta_field(Snew) - eta_field(S)), df(S)) / dlt
    # this is ehess. should be same as d1 or ehess_val
    print(xietaf - Dxietaf)
    print(xietaf - Dxietaf - ehess_val)

    # now check: rhess. Need to make sure xi, eta in the tangent space.
    # first compare this with numerical differentiation
    xi1 = man.proj(S, xxi)
    eta1 = man.proj(S, eeta)
    egvec = df(S)
    ehvec = ehess_vec(S, xi1)
    rhessvec = man.ehess2rhess(S, egvec, ehvec, xi1)

    # check it numerically:
    def rgrad_func(Y):
        return man.proj_g_inv(Y, df(Y))

    # val2a, _, _ = calc_covar_numeric_raw(man, W, xi1, df)
    val2, _, _ = calc_covar_numeric(man, S, xi1, rgrad_func)
    val2_p = man.proj(S, val2)
    # print(rhessvec)
    # print(val2_p)
    print(man._vec(rhessvec - val2_p))
    rhessval = man.inner_product_amb(S, rhessvec, eta1)
    print(man.inner_product_amb(S, val2, eta1))
    print(rhessval)

    # check symmetric:
    ehvec_e = ehess_vec(S, eta1)
    rhessvec_e = man.ehess2rhess(S, egvec, ehvec_e, eta1)
    rhessval_e = man.inner_product_amb(S, rhessvec_e, xi1)
    print(rhessval_e)

    # the above computed inner_prod(Nabla_xi Pi * df, eta)
    # in the following check. Extend eta1 to eta_proj
    # (Pi Nabla_hat Pi g_inv df, g eta)
    # = D_xi (Pi g_inv df, g eta) - (Pi g_inv df g Pi Nabla_hat eta)

    def eta_proj(S):
        return man.proj(S, eta_field(S))

    print(check_zero(man._vec(eta1 - eta_proj(S))))

    e1 = man.inner(S, man.proj_g_inv(S, df(S)), eta_proj(S))
    e1a = man.base_inner_ambient(df(S), eta_proj(S))
    print(e1, e1a, e1 - e1a)
    Snew = psd_point(S.Y + dlt * xi1.tY, S.P + dlt * xi1.tP)
    e2 = man.inner(Snew, man.proj_g_inv(Snew, df(Snew)), eta_proj(Snew))
    e2a = man.base_inner_ambient(df(Snew), eta_proj(Snew))
    print(e2, e2a, e2 - e2a)

    first = (e2 - e1) / dlt
    first1 = (man.base_inner_ambient(df(Snew), eta_proj(Snew)) -
              man.base_inner_ambient(df(S), eta_proj(S))) / dlt
    print(first - first1)

    val3, _, _ = calc_covar_numeric(man, S, xi1, eta_proj)
    second = man.inner(S, man.proj_g_inv(S, df(S)), man.proj(S, val3))
    second2 = man.inner(S, man.proj_g_inv(S, df(S)), val3)
    print(second, second2, second - second2)
    print('same as rhess_val %f' % (first - second))
Exemple #17
0
def test_covariance_deriv():
    # now test full:
    # do covariant derivatives
    # check that it works, preseving everything
    n, d = (5, 3)
    alpha = randint(1, 10, 2) * .1
    beta = randint(1, 10, 2)[0] * .01
    man = ComplexPositiveSemidefinite(n, d, alpha=alpha, beta=beta)
    S = man.rand()

    aa = crandn(n * d, n * d)
    cc = crandn(d * d, d * d)
    icpt = man._rand_ambient()

    def omg_func(S):
        csp = hsym((cc @ S.P.reshape(-1)).reshape(d, d))
        return psd_ambient(
            (aa @ S.Y.reshape(-1) + icpt.tY.reshape(-1)).reshape(n, d),
            csp + icpt.tP)

    xi = man.randvec(S)
    egrad = omg_func(S)
    ecsp = hsym((cc @ xi.tP.reshape(-1)).reshape(d, d))
    ehess = psd_ambient((aa @ xi.tY.reshape(-1)).reshape(n, d), ecsp)

    val1 = man.ehess2rhess(S, egrad, ehess, xi)

    def rgrad_func(W):
        return man.proj_g_inv(W, omg_func(W))

    if False:
        first = ehess
        a = man.J_g_inv(S, egrad)
        rgrad = man.proj_g_inv(S, egrad)
        second = man.D_g(S, xi, man.g_inv(S, egrad)).scalar_mul(-1)
        aout = man.solve_J_g_inv_Jst(S, a)
        third = man.proj(S, man.D_g_inv_Jst(S, xi, aout)).scalar_mul(-1)
        fourth = man.christoffel_form(S, xi, rgrad)
        val1a1 = man.proj_g_inv(S, first + second + fourth) + third
        print(check_zero(man._vec(val1 - val1a1)))
    elif True:
        d_xi_rgrad = num_deriv_amb(man, S, xi, rgrad_func)
        rgrad = man.proj_g_inv(S, egrad)
        fourth = man.christoffel_form(S, xi, rgrad)
        val1a = man.proj(S, d_xi_rgrad) + man.proj_g_inv(S, fourth)
        print(check_zero(man._vec(val1 - val1a)))

    # nabla_v_xi, dxi, cxxi
    val2a, _, _ = calc_covar_numeric(man, S, xi, omg_func)
    val2, _, _ = calc_covar_numeric(man, S, xi, rgrad_func)
    # val2_p = project(prj, val2)
    val2_p = man.proj(S, val2)
    # print(val1)
    # print(val2_p)
    print(check_zero(man._vec(val1) - man._vec(val2_p)))
    if True:
        H = xi
        valrangeA_ = ehess + man.g(S, man.D_proj(
            S, H, man.g_inv(S, egrad))) - man.D_g(
                S, H, man.g_inv(S, egrad)) +\
            man.christoffel_form(S, H, man.proj_g_inv(S, egrad))
        valrangeB = man.proj_g_inv(S, valrangeA_)
    valrange = man.ehess2rhess_alt(S, egrad, ehess, xi)
    print(check_zero(man._vec(valrange) - man._vec(val2_p)))
    print(check_zero(man._vec(valrange) - man._vec(val1)))
    print(check_zero(man._vec(valrange) - man._vec(valrangeB)))
def test_rhess_02():
    np.random.seed(0)
    dvec = np.array([10, 3, 2, 3])
    p = dvec.shape[0] - 1
    alpha = randint(1, 10, (p, p + 1)) * .1
    man = ComplexFlag(dvec, alpha=alpha)
    n = man.n
    d = man.d

    Y = man.rand()
    UU = {}
    p = alpha.shape[0]
    VV = {}
    gidx = man._g_idx

    for rr in range(p):
        UU[rr] = make_sym_pos(n)
        VV[rr] = crandn(n, dvec[rr + 1])

    def f(Y):
        ss = 0
        for rr in range(p):
            br, er = gidx[rr + 1]
            wr = Y[:, br:er]
            ss += trace(UU[rr] @ wr @ wr.T.conjugate()).real
        return ss

    def df(W):
        ret = np.zeros_like(W)
        for rr in range(p):
            br, er = gidx[rr + 1]
            wr = W[:, br:er]
            ret[:, br:er] += 2 * UU[rr] @ wr
        return ret

    def ehess_form(W, xi, eta):
        ss = 0
        for rr in range(p):
            br, er = gidx[rr + 1]
            ss += 2 * trace(
                UU[rr] @ xi[:, br:er] @ eta[:, br:er].T.conjugate()).real
        return ss

    def ehess_vec(W, xi):
        ret = np.zeros_like(W)
        for rr in range(p):
            br, er = gidx[rr + 1]
            ret[:, br:er] += 2 * UU[rr] @ xi[:, br:er]
        return ret

    xxi = crandn(n, d)
    dlt = 1e-8
    Ynew = Y + dlt * xxi
    d1 = (f(Ynew) - f(Y)) / dlt
    d2 = df(Y)
    print(d1 - trace(d2 @ xxi.T.conjugate()).real)

    eeta = crandn(n, d)

    d1 = trace((df(Ynew) - df(Y)) @ eeta.T.conjugate()).real / dlt
    ehess_val = ehess_form(Y, xxi, eeta)
    # ehess_val2 = ehess_form(Y, eeta, xxi)
    dv2 = ehess_vec(Y, xxi)
    print(trace(dv2 @ eeta.T.conjugate()).real)
    print(d1, ehess_val, d1 - ehess_val)

    # now check the formula: ehess = xi (eta_func(f)) - <D_xi eta, df(Y)>
    # promote eta to a vector field.

    m1 = crandn(n, n)
    m2 = crandn(d, d)

    def eta_field(Yin):
        return m1 @ (Yin - Y) @ m2 + eeta

    # xietaf: should go to ehess(xi, eta) + df(Y) @ etafield)
    xietaf = trace(
        df(Ynew) @ eta_field(Ynew).T.conjugate() -
        df(Y) @ eta_field(Y).T.conjugate()).real / dlt
    # appy eta_func to f: should go to tr(m1 @ xxi @ m2 @ df(Y).T.conjugate())
    Dxietaf = trace(
        (eta_field(Ynew) - eta_field(Y)) @ df(Y).T.conjugate()).real / dlt
    # this is ehess. should be same as d1 or ehess_val
    print(xietaf - Dxietaf)
    print(xietaf - Dxietaf - ehess_val)

    # now check: rhess. Need to make sure xi, eta in the tangent space.
    # first compare this with numerical differentiation
    xi1 = man.proj(Y, xxi)
    eta1 = man.proj(Y, eeta)
    egvec = df(Y)
    ehvec = ehess_vec(Y, xi1)
    rhessvec = man.ehess2rhess(Y, egvec, ehvec, xi1)

    # check it numerically:
    def rgrad_func(Y):
        return man.proj_g_inv(Y, df(Y))

    val2, _, _ = calc_covar_numeric(man, Y, xi1, rgrad_func)
    val2_p = man.proj(Y, val2)
    # print(rhessvec)
    # print(val2_p)
    print(check_zero(rhessvec - val2_p))
    rhessval = man.inner(Y, rhessvec, eta1)
    print(man.inner(Y, val2, eta1))
    print(rhessval)

    # check symmetric:
    ehvec_e = ehess_vec(Y, eta1)
    ehess_valp = ehess_form(Y, xi1, eta1)

    rhessvec_e = man.ehess2rhess(Y, egvec, ehvec_e, eta1)
    rhessval_e = man.inner(Y, rhessvec_e, xi1)
    rhessval_e1 = man.rhess02(Y, xi1, eta1, egvec, ehess_valp)
    # rhessval_e2 = man.rhess02_alt(Y, xi1, eta1, egvec,
    #                              trace([email protected]()).real)
    # print(rhessval_e, rhessval_e1, rhessval_e2)
    print(rhessval_e, rhessval_e1, rhessval_e - rhessval_e1)

    print('rhessval_e %f ' % rhessval_e)

    # the above computed inner_prod(Nabla_xi Pi * df, eta)
    # in the following check. Extend eta1 to eta_proj
    # (Pi Nabla_hat Pi g_inv df, g eta)
    # = D_xi (Pi g_inv df, g eta) - (Pi g_inv df g Pi Nabla_hat eta)

    def eta_proj(Y):
        return man.proj(Y, eta_field(Y))

    print(check_zero(eta1 - eta_proj(Y)))

    e1 = man.inner(Y, man.proj_g_inv(Y, df(Y)), eta_proj(Y))
    e1a = trace(df(Y) @ eta_proj(Y).T.conjugate()).real
    print(e1, e1a, e1 - e1a)
    Ynew = Y + xi1 * dlt
    e2 = man.inner(Ynew, man.proj_g_inv(Ynew, df(Ynew)), eta_proj(Ynew))
    e2a = trace(df(Ynew) @ eta_proj(Ynew).T.conjugate()).real
    print(e2, e2a, e2 - e2a)

    first = (e2 - e1) / dlt
    first1 = trace(
        df(Ynew) @ eta_proj(Ynew).T.conjugate() -
        df(Y) @ eta_proj(Y).T.conjugate()).real / dlt
    print(first - first1)

    val3, _, _ = calc_covar_numeric(man, Y, xi1, eta_proj)
    second = man.inner(Y, man.proj_g_inv(Y, df(Y)), man.proj(Y, val3))
    second2 = man.inner(Y, man.proj_g_inv(Y, df(Y)), val3)
    print(second, second2, second - second2)
    print('same as rhess_val %f' % (first - second))
def test_geodesics():
    from scipy.linalg import expm
    alpha = np.random.randint(1, 10, (2)) * .1
    # alpha = np.array([1, .5])
    m, d = (5, 3)
    man = ComplexStiefel(m, d, alpha=alpha)
    Y = man.rand()

    alf = alpha[1] / alpha[0]

    def calc_gamma(man, Y, eta):
        etaxiy = 2 * eta @ (eta.T.conj() @ Y)
        egcoef = Y @ (eta.T.conj() @ eta)
        ft = 1 - alf
        egcoef += ft * (etaxiy - Y @ (Y.T.conj() @ etaxiy))
        return egcoef

    eta = man.randvec(Y)
    g1 = calc_gamma(man, Y, eta)
    g2 = man.christoffel_gamma(Y, eta, eta)
    print(g1 - g2)
    egrad = crandn(m, d)
    print(rtrace(g1 @ egrad.T.conj()))
    print(man.rhess02_alt(Y, eta, eta, egrad, 0))

    # try to see if the solution is good:
    A = Y.T.conj() @ eta
    S0 = eta.T.conj() @ eta

    e_mat = np.bmat([[(2 * alf - 1) * A, -S0 - 2 * (1 - alf) * A @ A],
                     [np.eye(d), A]])
    init_c = np.bmat([Y, eta])

    def ff(t):
        v1 = init_c @ expm(t * e_mat)
        v2 = expm(t * (1 - 2 * alf) * A)
        return v1[:, :d] @ v2, v1[:, d:] @ v2, None

    t = 100
    dlt = 1e-8

    fval, fd, fdd = ff(t)
    fval1, fd1, fdd1 = ff(t + dlt)
    fval2, fd2, fdd2 = ff(t - dlt)
    ffdot = (fval1 - fval) / dlt
    print(check_zero(ffdot - fd))
    ffddot_0 = (fval1 - 2 * fval + fval2) / (dlt * dlt)
    ffddot = (fd1 - fd) / dlt
    print(ffddot_0)
    print(ffddot)
    print(ffddot + calc_gamma(man, fval, ffdot))

    # second solution:
    K = eta - Y @ (Y.T.conj() @ eta)
    Yp, R = np.linalg.qr(K)

    x_mat = np.bmat([[2 * alf * A, -R.T.conj()], [R, zeros((d, d))]])
    Yt = np.bmat([Y, Yp]) @ expm(t*x_mat)[:, :d] @ \
        expm(t*(1-2*alf)*A)
    x_d_mat = x_mat[:, :d].copy()
    x_d_mat[:d, :] += (1 - 2 * alf) * A
    Ydt = np.bmat([Y, Yp]) @ expm(t*x_mat) @ x_d_mat @\
        expm(t*(1-2*alf)*A)
    x_dd_mat = x_mat @ x_d_mat + x_d_mat @ ((1 - 2 * alf) * A)
    Yddt = np.bmat([Y, Yp]) @ expm(t*x_mat) @ x_dd_mat @\
        expm(t*(1-2*alf)*A)
    print(Yddt + calc_gamma(man, Yt, Ydt))
    print(man.exp(Y, t * eta) - Yt)
def test_rhess_02():
    alpha = randint(1, 10, 2) * .1
    gamma = randint(1, 10, 2) * .1
    beta = randint(1, 10, 2)[0] * .1

    m = 4
    n = 5
    p = 3
    man = ComplexFixedRank(m, n, p, alpha=alpha, beta=beta, gamma=gamma)

    S = man.rand()
    # simple function. Distance to a given matrix
    # || S - A||_F^2 Basically SVD
    A = crandn(m, n)

    def f(S):
        diff = (A - S.U @ S.P @ S.V.T.conj())
        return rtrace(diff @ diff.T.conj())

    def df(S):
        return fr_ambient(-2*A @ S.V @ S.P,
                          -2*A.T.conj() @ S.U @S.P,
                          2*(S.P-S.U.T.conj() @ A @ S.V))
    
    def ehess_vec(S, xi):
        return fr_ambient(-2*A @ (xi.tV @ S.P + S.V @ xi.tP),
                          -2*A.T.conj() @ (xi.tU @S.P + [email protected]),
                          2*(xi.tP - xi.tU.T.conj()@[email protected] -
                             S.U.T.conj()@[email protected]))
    
    def ehess_form(S, xi, eta):
        ev = ehess_vec(S, xi)
        return rtrace(ev.tU.T.conj() @ eta.tU) +\
            rtrace(ev.tV.T.conj() @ eta.tV) +\
            rtrace(ev.tP.T.conj() @ eta.tP)
    
    xxi = man.randvec(S)
    dlt = 1e-8
    Snew = fr_point(
        S.U+dlt*xxi.tU,
        S.V+dlt*xxi.tV,
        S.P + dlt*xxi.tP)
    d1 = (f(Snew) - f(S))/dlt
    d2 = df(S)
    print(d1 - man.base_inner_ambient(d2,  xxi))

    dv1 = (df(Snew) - df(S)).scalar_mul(1/dlt)
    dv2 = ehess_vec(S, xxi)
    print(man._vec(dv1-dv2))
    
    eeta = man.randvec(S)
    d1 = man.base_inner_ambient((df(Snew) - df(S)), eeta) / dlt
    ehess_val = ehess_form(S, xxi, eeta)
    
    print(man.base_inner_ambient(dv2, eeta))
    print(d1, ehess_val, d1-ehess_val)

    # now check the formula: ehess = xi (eta_func(f)) - <D_xi eta, df(Y)>
    # promote eta to a vector field.

    mU1 = crandn(m, m)
    mV1 = crandn(n, n)
    m2 = crandn(p, p)
    m_p = crandn(p*p, p*p)

    def eta_field(Sin):
        return man.proj(S, fr_ambient(
            mU1 @ (Sin.U - S.U) @ m2,
            mV1 @ (Sin.V - S.V) @ m2,
            hsym((m_p @ (Sin.P - S.P).reshape(-1)).reshape(p, p)))) + eeta

    # xietaf: should go to ehess(xi, eta) + df(Y) @ etafield)
    xietaf = (man.base_inner_ambient(df(Snew), eta_field(Snew)) -
              man.base_inner_ambient(df(S), eta_field(S))) / dlt
    # appy eta_func to f: should go to tr(m1 @ xxi @ m2 @ df(Y).T.conj())
    Dxietaf = man.base_inner_ambient(
        (eta_field(Snew) - eta_field(S)), df(S))/dlt
    # this is ehess. should be same as d1 or ehess_val
    print(xietaf-Dxietaf)
    print(xietaf-Dxietaf-ehess_val)

    # now check: rhess. Need to make sure xi, eta in the tangent space.
    # first compare this with numerical differentiation
    xi1 = man.proj(S, xxi)
    eta1 = man.proj(S, eeta)
    egvec = df(S)
    ehvec = ehess_vec(S, xi1)
    rhessvec = man.ehess2rhess(S, egvec, ehvec, xi1)

    # check it numerically:
    def rgrad_func(Y):
        return man.proj_g_inv(Y, df(Y))
    
    # val2a, _, _ = calc_covar_numeric_raw(man, W, xi1, df)
    val2, _, _ = calc_covar_numeric(man, S, xi1, rgrad_func)
    val2_p = man.proj(S, val2)
    # print(rhessvec)
    # print(val2_p)
    print(man._vec(rhessvec-val2_p))
    rhessval = man.inner(S, rhessvec, eta1)
    print(man.inner(S, val2, eta1))
    print(rhessval)

    # check symmetric:
    ehvec_e = ehess_vec(S, eta1)
    rhessvec_e = man.ehess2rhess(S, egvec, ehvec_e, eta1)
    rhessval_e = man.inner(S, rhessvec_e, xi1)
    print(rhessval_e)
    # the above computed inner_prod(Nabla_xi Pi * df, eta)
    # in the following check. Extend eta1 to eta_proj
    # (Pi Nabla_hat Pi g_inv df, g eta)
    # = D_xi (Pi g_inv df, g eta) - (Pi g_inv df g Pi Nabla_hat eta)
    
    def eta_proj(S):
        return man.proj(S, eta_field(S))
    print(check_zero(man._vec(eta1-eta_proj(S))))
    
    e1 = man.inner(S, man.proj_g_inv(S, df(S)), eta_proj(S))
    e1a = man.base_inner_ambient(df(S), eta_proj(S))
    print(e1, e1a, e1-e1a)
    Snew = fr_point(
        S.U + dlt*xi1.tU,
        S.V + dlt*xi1.tV,
        S.P + dlt*xi1.tP)
    e2 = man.inner(Snew, man.proj_g_inv(Snew, df(Snew)), eta_proj(Snew))
    e2a = man.base_inner_ambient(df(Snew), eta_proj(Snew))
    print(e2, e2a, e2-e2a)
    
    first = (e2 - e1)/dlt
    first1 = (man.base_inner_ambient(df(Snew), eta_proj(Snew)) -
              man.base_inner_ambient(df(S), eta_proj(S)))/dlt
    print(first-first1)
    
    val3, _, _ = calc_covar_numeric(man, S, xi1, eta_proj)
    second = man.inner(S, man.proj_g_inv(S, df(S)), man.proj(S, val3))
    second2 = man.inner(S, man.proj_g_inv(S, df(S)), val3)
    print(second, second2, second-second2)
    print('same as rhess_val %f' % (first-second))
def test_covariance_deriv():
    # now test full:
    # do covariant derivatives
    alpha = randint(1, 10, 2) * .1
    gamma = randint(1, 10, 2) * .1
    beta = randint(1, 10, 2)[0] * .1

    m = 4
    n = 5
    p = 3
    man = ComplexFixedRank(m, n, p, alpha=alpha, beta=beta, gamma=gamma)
    
    S = man.rand()
    
    aaU = crandn(m*p, m*p)
    aaV = crandn(n*p, n*p)
    cc = crandn(p*p, p*p)
    icpt = man._rand_ambient()

    def omg_func(S):
        csp = hsym((cc @ S.P.reshape(-1)).reshape(p, p))
        return fr_ambient(
            (aaU @ S.U.reshape(-1) + icpt.tU.reshape(-1)).reshape(m, p),
            (aaV @ S.V.reshape(-1) + icpt.tV.reshape(-1)).reshape(n, p),
            csp + icpt.tP)

    xi = man.randvec(S)
    egrad = omg_func(S)
    ecsp = hsym((cc @ xi.tP.reshape(-1)).reshape(p, p))
    ehess = fr_ambient(
        (aaU @ xi.tU.reshape(-1)).reshape(m, p),
        (aaV @ xi.tV.reshape(-1)).reshape(n, p),
        ecsp)

    val1 = man.ehess2rhess(S, egrad, ehess, xi)

    def rgrad_func(W):
        return man.proj_g_inv(W, omg_func(W))

    if False:
        first = ehess
        a = man.J_g_inv(S, egrad)
        rgrad = man.proj_g_inv(S, egrad)
        second = man.D_g(
            S, xi, man.g_inv(S, egrad)).scalar_mul(-1)
        aout = man.solve_J_g_inv_Jst(S, a)
        third = man.proj(S, man.D_g_inv_Jst(S, xi, aout)).scalar_mul(-1)
        fourth = man.christoffel_form(S, xi, rgrad)
        val1a1 = man.proj_g_inv(S, first + second + fourth) + third
        print(check_zero(man._vec(val1-val1a1)))
    elif True:
        d_xi_rgrad = num_deriv_amb(man, S, xi, rgrad_func)
        rgrad = man.proj_g_inv(S, egrad)
        fourth = man.christoffel_form(S, xi, rgrad)
        val1a = man.proj(S, d_xi_rgrad) + man.proj_g_inv(S, fourth)
        print(check_zero(man._vec(val1-val1a)))

    # nabla_v_xi, dxi, cxxi
    val2a, _, _ = calc_covar_numeric(man, S, xi, omg_func)
    val2, _, _ = calc_covar_numeric(man, S, xi, rgrad_func)
    # val2_p = project(prj, val2)
    val2_p = man.proj(S, val2)
    # print(val1)
    # print(val2_p)
    print(check_zero(man._vec(val1)-man._vec(val2_p)))
    if True:
        H = xi
        valrangeA_ = ehess + man.g(S, man.D_proj(
            S, H, man.g_inv(S, egrad))) - man.D_g(
                S, H, man.g_inv(S, egrad)) +\
            man.christoffel_form(S, H, man.proj_g_inv(S, egrad))
        valrangeB = man.proj_g_inv(S, valrangeA_)
    valrange = man.ehess2rhess(S, egrad, ehess, xi)
    print(check_zero(man._vec(valrange)-man._vec(val2_p)))
    print(check_zero(man._vec(valrange)-man._vec(val1)))
    print(check_zero(man._vec(valrange)-man._vec(valrangeB)))
def test_chris_vectorfields():
    # now test that it works on embedded metrics
    # we test that D_xi (eta g eta) = 2(eta g nabla_xi eta)
    alpha = randint(1, 10, 2) * .1
    gamma = randint(1, 10, 2) * .1
    beta = randint(1, 10, 2)[0] * .1

    m = 4
    n = 5
    p = 3
    man = ComplexFixedRank(m, n, p, alpha=alpha, beta=beta, gamma=gamma)

    S0 = man.rand()
    aaU = crandn(m*p, m*p)
    intcU = crandn(m*p)
    aaV = crandn(n*p, n*p)
    intcV = crandn(n*p)
    
    cc = crandn(p*p, p*p)
    p_intc = hsym(crandn(p, p))

    inct_xi = man._rand_ambient()
    aa_xiU = crandn(m*p, m*p)
    aa_xiV = crandn(n*p, n*p)
    cc_xi = crandn(p*p, p*p)
    
    def v_func(S):
        # a function from the manifold
        # to ambient
        csp = hsym((cc @ (S.P-S0.P).reshape(-1)).reshape(p, p))
        
        return man.proj(S, fr_ambient(
            (aaU @ (S.U-S0.U).reshape(-1) + intcU).reshape(m, p),
            (aaV @ (S.V-S0.V).reshape(-1) + intcV).reshape(n, p),
            csp + p_intc))

    SS = fr_point(S0.U, S0.V, S0.P)
    xi = man.proj(SS, inct_xi)

    nabla_xi_v, dv, cxv = calc_covar_numeric(
        man, SS, xi, v_func)

    def xi_func(S):
        csp_xi = hsym((cc_xi @ (S.P-S0.P).reshape(-1)).reshape(p, p))
        xi_amb = fr_ambient(
            (aa_xiU @ (S.U-S0.U).reshape(-1) +
             inct_xi.tU.reshape(-1)).reshape(m, p),
            (aa_xiV @ (S.V-S0.V).reshape(-1) +
             inct_xi.tV.reshape(-1)).reshape(n, p),
            csp_xi + inct_xi.tP)
        return man.proj(S, xi_amb)

    vv = v_func(SS)

    nabla_v_xi, dxi, cxxi = calc_covar_numeric(
        man, SS, vv, xi_func)
    diff = nabla_xi_v - nabla_v_xi
    print(diff.tU, diff.tV, diff.tP)
    # now do Lie bracket:
    dlt = 1e-7
    SnewXi = fr_point(SS.U+dlt*xi.tU,
                      SS.V+dlt*xi.tV,
                      SS.P+dlt*xi.tP)
    Snewvv = fr_point(SS.U+dlt*vv.tU,
                      SS.V+dlt*vv.tV,
                      SS.P+dlt*vv.tP)
    vnewxi = v_func(SnewXi)
    xnewv = xi_func(Snewvv)
    dxiv = (vnewxi - vv).scalar_mul(1/dlt)
    dvxi = (xnewv - xi).scalar_mul(1/dlt)
    diff2 = man.proj(SS, dxiv-dvxi)
    print(check_zero(man._vec(diff) - man._vec(diff2)))