def plot_looped_data(directory): file_list = get_data_paths(directory) print(len(file_list)) voltage_list = list() current_list = list() try: for file in sorted(file_list, key=file_sort): print(file) for_voltage = list() rev_voltage = list() for_current = list() rev_current = list() forward, reverse = get_looped_cv_data(file) for reading_for, reading_rev in zip(forward, reverse): for_voltage.append(reading_for[0]) rev_voltage.append(reading_rev[0]) for_current.append(reading_for[1]) rev_current.append(reading_rev[1]) forward_np = np.array(forward) reverse_np = np.array(reverse) voltage = np.concatenate((for_voltage, rev_voltage[::-1]), axis=0) current = np.concatenate((for_current, rev_current[::-1]), axis=0) voltage_list.append(voltage) current_list.append(current) except ValueError: print('could not be read') return voltage_list, current_list
def main(): plt.style.use(['seaborn-white', 'seaborn-notebook']) directory = "/Users/st659/Google Drive/Meth Blue Glucose 12-10-16" paths = get_data_paths(directory) print(paths) sub_bw_anti_3, bw_anti_3, legend1 = calculate_graph_data(paths[3:6]) sub_bw_noanti_3, bw_noanti_3, legend2 = calculate_graph_data(paths[6:9]) sub_pk_anti_3, pk_anti_3, legend3 = calculate_graph_data(paths[10:12]) sub_pk_noanti_3, pk_noanti_3, legend4 = calculate_graph_data(paths[12:15]) bw_mean = np.array([bw_anti_3[1], bw_noanti_3[1]]) pk_mean = np.array([pk_anti_3[1], pk_noanti_3[1]]) total_mean_matrix = np.array( [bw_anti_3[1], bw_noanti_3[1], pk_noanti_3[1], pk_anti_3[1]]) mean_var = np.var(total_mean_matrix, axis=0) bw_var = np.var(bw_mean, axis=0) pk_var = np.var(pk_mean, axis=0) print(len(mean_var)) figure_var = plt.figure() ax_var = figure_var.add_subplot(111) ax_var.plot(bw_noanti_3[0], bw_var, label='BW') ax_var.plot(bw_noanti_3[0], pk_var, label='PK') plt.legend(loc='upper right') figure1 = plt.figure() ax1 = figure1.add_subplot(211) ax1.errorbar(sub_bw_anti_3[0], sub_bw_anti_3[1], sub_bw_anti_3[2], label=legend1) ax1.errorbar(sub_bw_noanti_3[0], sub_bw_noanti_3[1], sub_bw_noanti_3[2], label=legend2) ax1.set_ylabel('Current (mA)') ax1.set_xlabel('Voltage (V)') plt.legend(loc='upper left') ax2 = figure1.add_subplot(212) ax2.errorbar(sub_pk_anti_3[0], sub_pk_anti_3[1], sub_pk_anti_3[2], label=legend3) ax2.errorbar(sub_pk_noanti_3[0], sub_pk_noanti_3[1], sub_pk_noanti_3[2], label=legend4) ax2.set_ylabel('Current (mA)') ax2.set_xlabel('Voltage (V)') plt.legend(loc='upper left') plt.show()
def cv_difference(directory): paths = get_data_paths(directory) sub_bw_anti, bw_anti, bw_anti_max_volt, legend1 = calculate_graph_data( paths[3:6]) sub_bw_noanti, bw_noanti, bw_noanti_max_volt, legend2 = calculate_graph_data( paths[6:9]) sub_pk_anti, pk_anti, pk_anti_max_volt, legend3 = calculate_graph_data( paths[10:12]) sub_pk_noanti, pk_noanti, pk_noanti_max_volt, legend4 = calculate_graph_data( paths[12:15]) diff_bw = np.subtract(sub_bw_anti[1], sub_bw_noanti[1]) diff_bw_std = np.sqrt( np.add(np.square(sub_bw_anti[2]), np.square(sub_bw_noanti[2]))) diff_pk = np.subtract(sub_pk_anti[1], sub_pk_noanti[1]) diff_pk_std = np.sqrt( np.add(np.square(sub_pk_anti[2]), np.square(sub_pk_noanti[2]))) return [sub_bw_anti[0], diff_bw, diff_bw_std, diff_pk, diff_pk_std]
from Meth_blue_06_09 import get_data_paths, calculate_graph_data import matplotlib.pyplot as plt import os directory1 = '/Users/st659/Google Drive/Resazurin Growth 12-1-17' directory2 = '/Users/st659/Google Drive/Resazurin Growth 11-1-17' directory3 = '/Users/st659/Google Drive/Resazurin Growth 5-1-17' plt.style.use(['seaborn-white', 'seaborn-notebook']) paths1 = get_data_paths(directory1) paths2 = get_data_paths(directory2) paths3 = get_data_paths(directory3) blank = paths1[:2] mg4_paths = paths1[3:] mg5_paths = paths2[2:] mg6_paths = paths3[2:] print(mg6_paths) print(mg5_paths) print(mg4_paths) paths_list = [blank, mg4_paths, mg6_paths] fig2 = plt.figure() legends = ['Blank', 'E.coli MG1655 $10^{4}$ cfu/ml', 'E.coli MG1655 $10^{6}$ cfu/ml'] ax2 = fig2.add_subplot(111)
from Meth_blue_06_09 import get_data_paths, calculate_graph_data import matplotlib.pyplot as plt import os from EIS_Reader import EISReader cv_directory = '/Users/st659/Google Drive/ITO Diazonium 24-2-17/CV' eis_directory = '/Users/st659/Google Drive/ITO Diazonium 24-2-17/EIS' cv_paths = get_data_paths(cv_directory) eis_paths = get_data_paths(eis_directory) plt.style.use(['seaborn-white', 'seaborn-notebook']) fig = plt.figure() ax = fig.add_subplot(121) ax2 = fig.add_subplot(122) ax3 = ax2.twinx() for cv_path, eis_path in zip(cv_paths, eis_paths): sub_data_2, data, legend = calculate_graph_data(cv_path) eis_reader = EISReader(eis_path) ax2.loglog(eis_reader.eis.frequency, eis_reader.eis.magnitude) ax3.semilogx(eis_reader.eis.frequency, eis_reader.eis.phase, linestyle='--') print(eis_reader.eis.frequency) legend_str = cv_path.split('/')[-1] print(legend_str) leg = legend_str.split('.')[0] leg = leg.split('_')[1] ax.plot(sub_data_2[0], sub_data_2[1], label=leg)
def main(): directory = "/Users/st659/Google Drive/Meth Blue 12-09" paths = get_data_paths(directory) plt.style.use(['seaborn-white', 'seaborn-notebook']) print(paths) # sub_bw_anti_3, bw_anti_3, = calculate_graph_data(paths[0:3]) # sub_bw_noanti_3, bw_noanti_3 = calculate_graph_data(paths[3:6]) # sub_pk_anti_3, pk_anti_3 = calculate_graph_data(paths[6:9]) # sub_pk_noanti_3, pk_noanti_3 = calculate_graph_data(paths[9:12]) # # figure1 = plt.figure() # ax1 = figure1.add_subplot(111) # ax1.errorbar(sub_bw_anti_3[0], sub_bw_anti_3[1], sub_bw_anti_3[2]) # ax1.errorbar(sub_bw_noanti_3[0], sub_bw_noanti_3[1], sub_bw_noanti_3[2]) # ax1.errorbar(sub_pk_anti_3[0], sub_pk_anti_3[1], sub_pk_anti_3[2]) # ax1.errorbar(sub_pk_noanti_3[0], sub_pk_noanti_3[1], sub_pk_noanti_3[2]) # # plt.xlabel('Voltage vs reference (V)') # plt.ylabel('Current (mA)') # plt.xlim([-0.3, 0]) # plt.ylim([-0.02, 0.01]) # plt.legend(('BW25113 0$\mu g/ml$ Ampicillin', 'BW25133 50$\mu g/ml$ Ampicillin', 'BW25113 with PKD3 0$\mu g/ml$ Ampicillin', 'BW25113 with PKD3 50$\mu g/ml$ Ampicillin'),loc='lower right', fontsize = '10') # plt.title(r'Antibiotic Susceptibility of $10^{3}$ Bacteria after 5 hours incubation') # sub_bw_anti_4, bw_anti_4, l= calculate_graph_data(paths[12:15]) # sub_bw_noanti_4, bw_noanti_4, l = calculate_graph_data(paths[15:18]) # sub_pk_anti_4, pk_anti_4, l = calculate_graph_data(paths[18:21]) # sub_pk_noanti_4, pk_noanti_4, l = calculate_graph_data(paths[21:24]) # # figure2 = plt.figure() # ax2 = figure2.add_subplot(111) # ax2.errorbar(sub_bw_anti_4[0], sub_bw_anti_4[1], sub_bw_anti_4[2]) # ax2.errorbar(sub_bw_noanti_4[0], sub_bw_noanti_4[1], sub_bw_noanti_4[2]) # ax2.errorbar(sub_pk_anti_4[0], sub_pk_anti_4[1], sub_pk_anti_4[2]) # ax2.errorbar(sub_pk_noanti_4[0], sub_pk_noanti_4[1], sub_pk_noanti_4[2]) # # plt.xlabel('Voltage vs reference (V)') # plt.ylabel('Current (mA)') # plt.xlim([-0.3, 0]) # plt.ylim([-0.02, 0.01]) # plt.legend(('BW25113 50$\mu g/ml$ Ampicillin', 'BW25133 0$\mu g/ml$ Ampicillin', 'BW25113 with PKD3 50$\mu g/ml$ Ampicillin', 'BW25113 with PKD3 0$\mu g/ml$ Ampicillin'),loc='lower right', fontsize = '10') # plt.title(r'Antibiotic Susceptibility of $10^{4}$ CFU/ml after 5 hours incubation') # #plt.savefig(os.path.join(directory,'susceptibility 10_4.png'), dpi=1200) # # diff = np.subtract(sub_bw_anti_4[1], sub_bw_noanti_4[1]) # diff_std = np.sqrt(np.add(np.square(sub_bw_anti_4[2]), np.square(sub_bw_noanti_4[2]))) # diff2 = np.subtract(sub_pk_anti_4[1], sub_pk_noanti_4[1]) # diff2_std = np.sqrt(np.add(np.square(sub_pk_anti_4[2]), np.square(sub_pk_noanti_4[2]))) # # figure2 = plt.figure() # ax3 = figure2.add_subplot(211) # ax3.errorbar(sub_bw_anti_4[0], diff, diff_std, label='BW', color='b') # ax3.set_ylabel('$\Delta$ Current (mA)') # # plt.legend(loc = 'upper left') # ax4 = figure2.add_subplot(212) # ax4.errorbar(sub_bw_anti_4[0], diff2, diff2_std, label='PK', color='g') # ax4.set_ylabel('$\Delta$ Current (mA)') # ax4.set_xlabel('Voltage (V)') # plt.legend(loc = 'upper left') # # # # # sub_bw_anti_5, bw_anti_5, l = calculate_graph_data(paths[24:27]) # sub_bw_noanti_5, bw_noanti_5, l = calculate_graph_data(paths[27:30]) # sub_pk_anti_5, pk_anti_5, l = calculate_graph_data(paths[30:33]) # sub_pk_noanti_5, pk_noanti_5, l = calculate_graph_data(paths[33:36]) # # mean_matrix = np.array([bw_anti_5[1], bw_noanti_5[1], pk_noanti_5[1], pk_anti_5[1]]) # mean_var = np.var(mean_matrix, axis=0) # print(len(mean_var)) # # figure_var = plt.figure() # ax_var = figure_var.add_subplot(111) # ax_var.plot(bw_noanti_5[0], mean_var) # plt.show() # diff = np.subtract(sub_bw_anti_5[1], sub_bw_noanti_5[1]) # diff_std = np.sqrt(np.add(np.square(sub_bw_anti_5[2]), np.square(sub_bw_noanti_5[2]))) # diff2 = np.subtract(sub_pk_anti_5[1], sub_pk_noanti_5[1]) # diff2_std = np.sqrt(np.add(np.square(sub_pk_anti_5[2]), np.square(sub_pk_noanti_5[2]))) # # figure3 = plt.figure() # ax5 = figure3.add_subplot(211) # ax5.errorbar(sub_bw_anti_4[0], diff, diff_std, label='BW', color='b') # ax5.set_ylabel('$\Delta$ Current (mA)') # # plt.legend(loc = 'upper left') # ax6 = figure3.add_subplot(212) # ax6.errorbar(sub_bw_anti_4[0], diff2, diff2_std, label='PK', color='g') # ax6.set_ylabel('$\Delta$ Current (mA)') # ax6.set_xlabel('Voltage (V)') # plt.legend(loc = 'upper left') # # figure3 = plt.figure() # ax3 = figure3.add_subplot(111) # ax3.errorbar(sub_bw_anti_5[0], sub_bw_anti_5[1], sub_bw_anti_5[2]) # ax3.errorbar(sub_bw_noanti_5[0], sub_bw_noanti_5[1], sub_bw_noanti_5[2]) # ax3.errorbar(sub_pk_anti_5[0], sub_pk_anti_5[1], sub_pk_anti_5[2]) # ax3.errorbar(sub_pk_noanti_5[0], sub_pk_noanti_5[1], sub_pk_noanti_5[2]) # # plt.xlabel('Voltage vs reference (V)') # plt.ylabel('Current (mA)') # plt.xlim([-0.3, 0]) # plt.ylim([-0.02, 0.01]) # plt.legend(('BW25113 50$\mu g/ml$ Ampicillin', 'BW25133 00$\mu g/ml$ Ampicillin', 'BW25113 with PKD3 50$\mu g/ml$ Ampicillin', 'BW25113 with PKD3 0$\mu g/ml$ Ampicillin'),loc='lower right', fontsize = '10') # plt.title(r'Antibiotic Susceptibility of $10^{5}$ CFU/ml after 5 hours incubation') # #plt.savefig(os.path.join(directory,'susceptibility 10_5.png'), dpi=1200) # sub_bw_anti_6, bw_anti_6, leg= calculate_graph_data(paths[36:39]) sub_bw_noanti_6, bw_noanti_6, leg = calculate_graph_data(paths[39:42]) sub_pk_anti_6, pk_anti_6, leg = calculate_graph_data(paths[42:45]) sub_pk_noanti_6, pk_noanti_6, leg = calculate_graph_data(paths[45:48]) figure4 = plt.figure() ax4 = figure4.add_subplot(111) ax4.errorbar(sub_bw_anti_6[0], sub_bw_anti_6[1], sub_bw_anti_6[2]) ax4.errorbar(sub_bw_noanti_6[0], sub_bw_noanti_6[1], sub_bw_noanti_6[2]) ax4.errorbar(sub_pk_anti_6[0], sub_pk_anti_6[1], sub_pk_anti_6[2]) ax4.errorbar(sub_pk_noanti_6[0], sub_pk_noanti_6[1], sub_pk_noanti_6[2]) plt.xlabel('Voltage vs reference (V)') plt.ylabel('Current (mA)') plt.xlim([-0.3, 0]) plt.ylim([-0.02, 0.01]) plt.legend(('BW25113 50$\mu g/ml$ Ampicillin', 'BW25133 0$\mu g/ml$ Ampicillin', 'BW25113 with PKD3 50$\mu g/ml$ Ampicillin', 'BW25113 with PKD3 0$\mu g/ml$ Ampicillin'),loc='lower right', fontsize = '10') plt.title(r'Antibiotic Susceptibility of $10^{6}$ CFU/ml after 5 hours incubation') plt.savefig(os.path.join(directory,'susceptibility 10_6 300dpi.png'), dpi=300)
from Meth_blue_06_09 import get_data_paths, calculate_graph_data import matplotlib.pyplot as plt import os directory = '/Users/st659/Google Drive/ITO Resazurin 17-5-17/Resazurin/Gold' directory2 = '/Users/st659/Google Drive/ITO Resazurin 17-5-17/MB/SHU' paths = get_data_paths(directory) paths_2 = get_data_paths(directory2) blank = paths[:2] mg = paths[2:] mg_pseudo = paths_2[2:] plt.style.use(['seaborn-white', 'seaborn-notebook']) data_list = list() data_list_2 = list() # fig = plt.figure() fig2 = plt.figure() # ax = fig.add_subplot(111) ax = fig2.add_subplot(111) #ax2 = fig2.add_subplot(122) # for path in paths_list: for pb_path in paths: print(pb_path) no, pb, legend = calculate_graph_data(pb_path) #esfe, shu, seg = calculate_graph_data(shu_path)
from Meth_blue_06_09 import get_data_paths, calculate_graph_data from EIS_Reader import EISReader import matplotlib.pyplot as plt import os directory = '/Users/st659/Google Drive/ITO Diazonium' paths = get_data_paths(directory) plt.style.use(['seaborn-white', 'seaborn-notebook']) fig = plt.figure() ax = fig.add_subplot(111) print(len(paths)) for path in paths: sub_data_2, data, legend = calculate_graph_data(path) legend_str = path.split('/')[-1] print(legend_str) leg = legend_str.split('.')[0] print(legend) ax.plot(sub_data_2[0], sub_data_2[1], label=leg) plt.title('Electrografting of Diazonium Salts to ITO') plt.ylabel('Current (mA)') plt.xlabel('Voltage (V)') plt.legend(loc='upper left') plt.savefig(os.path.join(directory, 'ITO_Diaz-22-2-17.png'), dpi=300) plt.show()