Exemple #1
0
    def __init__(self, _subs: List[SubstanceProp], _k):
        self.substances = _subs
        self.k = _k
        self.eosname = ""
        self.mixRuleBehavior = MixtureRuleBehavior()
        self.thetaiBehavior = ThetaiBehavior()
        self.biBehavior = BiBehavior()
        # TODO remove deltai and epsiloni?
        self.deltaiBehavior = DeltaiBehavior()
        self.epsiloniBehavior = EpsiloniBehavior()
        self.deltaMixBehavior = DeltaMixtureRuleBehavior()
        self.epsilonMixBehavior = EpsilonMixtureRuleBehavior()
        self.n = len(self.substances)

        self.Vcs = np.zeros(self.n)
        self.Pcs = np.zeros(self.n)
        self.Tcs = np.zeros(self.n)
        self.omegas = np.zeros(self.n)
        self.subs_ids = self.getSubstancesIDs()
        self.vle_method = "phi-phi"
        self.has_UNIFAC = self.hasUNIFAC()

        if self.has_UNIFAC:
            self.unifac_model = UNIFAC(self.subs_ids)

        for i in range(self.n):
            self.Vcs[i] = self.substances[i].Vc
            self.Tcs[i] = self.substances[i].Tc
            self.Pcs[i] = self.substances[i].Pc
            self.omegas[i] = self.substances[i].omega
 def diffEpsilonm(
     self, i: int, y, T: float, bib: BiBehavior, bmb: MixtureRuleBehavior, substances
 ) -> float:
     c = self.c.getCm(y, T, substances)
     cline = self.c.getDiffCm(i, y, T, substances)
     b = bmb.bm(y, T, bib, substances)
     bline = bmb.diffBm(i, y, T, bib, substances)
     return -bline * c - cline * b
 def diffEpsilonm(
     self, i: int, y, T: float, bib: BiBehavior, bmb: MixtureRuleBehavior, substances
 ) -> float:
     w = getW(y, substances)
     diffw = substances[i].omega
     b = bmb.bm(y, T, bib, substances)
     diffb = bmb.diffBm(i, y, T, bib, substances)
     return diffw * b * b + w * 2.0 * b * diffb
 def diffDeltam(
     self, i: int, y, T: float, bib: BiBehavior, bmb: MixtureRuleBehavior, substances
 ) -> float:
     u = 1.0 - getW(y, substances)
     return (
         u * bmb.diffBm(i, y, T, bib, substances)
         - bmb.bm(y, T, bib, substances) * substances[i].omega
     )
 def diffDeltam(self, i: int, y, T: float, bib: BiBehavior,
                bmb: MixtureRuleBehavior, substances) -> float:
     return 2.0 * bmb.diffBm(i, y, T, bib, substances
                             ) + 4.0 * self.cm.diffCm(i, y, T, substances)
 def deltam(self, y, T: float, bib: BiBehavior, bmb: MixtureRuleBehavior,
            substances) -> float:
     return 2.0 * bmb.bm(y, T, bib, substances) + 4.0 * self.cm.cm(
         y, T, substances)
 def diffEpsilonm(self, i: int, y, T: float, bib: BiBehavior,
                  bmb: MixtureRuleBehavior, substances) -> float:
     return -2.0 * bmb.bm(y, T, bib, substances) * bmb.diffBm(
         i, y, T, bib, substances) + 4.0 * self.cm.cm(
             y, T, substances) * self.cm.diffCm(i, y, T, substances)
 def epsilonm(self, y, T: float, bib: BiBehavior, bmb: MixtureRuleBehavior,
              substances) -> float:
     return (-(bmb.bm(y, T, bib, substances))**2 + 2.0 *
             (self.cm.cm(y, T, substances))**2)
 def epsilonm(self, y, T: float, bib: BiBehavior, bmb: MixtureRuleBehavior,
              substances) -> float:
     b = bmb.bm(y, T, bib, substances)
     c = self.cm.cm(y, T, substances)
     return b * c + 2.0 * c * c
Exemple #10
0
 def diffDeltam(self, i: int, y, T: float, bib: BiBehavior,
                bmb: MixtureRuleBehavior, substances) -> float:
     return (bmb.diffBm(i, y, T, bib, substances) +
             self.cm.ci.getCi(i, T, substances) * 3.0)
Exemple #11
0
 def deltam(self, y, T: float, bib: BiBehavior, bmb: MixtureRuleBehavior,
            substances) -> float:
     b = bmb.bm(y, T, bib, substances)
     c = self.cm.cm(y, T, substances)
     return b + 3.0 * c
Exemple #12
0
class EOSMixture:
    """
    Main class for modeling a system with multiple substances, using a cubic equation of state.

    This is the main class of the software. It's responsable for calculating all properties,
    and all the vapor-liquid equilibrium data. It uses a generalized cubic equation of state for all
    its calculations.
    """
    def __init__(self, _subs: List[SubstanceProp], _k):
        self.substances = _subs
        self.k = _k
        self.eosname = ""
        self.mixRuleBehavior = MixtureRuleBehavior()
        self.thetaiBehavior = ThetaiBehavior()
        self.biBehavior = BiBehavior()
        # TODO remove deltai and epsiloni?
        self.deltaiBehavior = DeltaiBehavior()
        self.epsiloniBehavior = EpsiloniBehavior()
        self.deltaMixBehavior = DeltaMixtureRuleBehavior()
        self.epsilonMixBehavior = EpsilonMixtureRuleBehavior()
        self.n = len(self.substances)

        self.Vcs = np.zeros(self.n)
        self.Pcs = np.zeros(self.n)
        self.Tcs = np.zeros(self.n)
        self.omegas = np.zeros(self.n)
        self.subs_ids = self.getSubstancesIDs()
        self.vle_method = "phi-phi"
        self.has_UNIFAC = self.hasUNIFAC()

        if self.has_UNIFAC:
            self.unifac_model = UNIFAC(self.subs_ids)

        for i in range(self.n):
            self.Vcs[i] = self.substances[i].Vc
            self.Tcs[i] = self.substances[i].Tc
            self.Pcs[i] = self.substances[i].Pc
            self.omegas[i] = self.substances[i].omega

    def hasUNIFAC(self):
        if len(self.subs_ids) < 2:
            return False
        return has_unifac_in_db(self.subs_ids)

    def getZfromPT(self, P: float, T: float, y):

        b = self.mixRuleBehavior.bm(y, T, self.biBehavior, self.substances)
        theta = self.mixRuleBehavior.thetam(y, T, self.thetaiBehavior,
                                            self.substances, self.k)
        delta = self.deltaMixBehavior.deltam(y, T, self.biBehavior,
                                             self.mixRuleBehavior,
                                             self.substances)
        epsilon = self.epsilonMixBehavior.epsilonm(y, T, self.biBehavior,
                                                   self.mixRuleBehavior,
                                                   self.substances)
        return _getZfromPT_helper(b, theta, delta, epsilon, T, P, R_IG)

    def getPfromTV(self, T: float, V: float, y) -> float:
        b = self.mixRuleBehavior.bm(y, T, self.biBehavior, self.substances)
        theta = self.mixRuleBehavior.thetam(y, T, self.thetaiBehavior,
                                            self.substances, self.k)
        delta = self.deltaMixBehavior.deltam(y, T, self.biBehavior,
                                             self.mixRuleBehavior,
                                             self.substances)
        epsilon = self.epsilonMixBehavior.epsilonm(y, T, self.biBehavior,
                                                   self.mixRuleBehavior,
                                                   self.substances)
        p = R_IG * T / (V - b) - theta / (V * (V + delta) + epsilon)
        return p

    def getPhi_i(self, i: int, y, P: float, T: float, Z: float):

        bm = self.mixRuleBehavior.bm(y, T, self.biBehavior, self.substances)
        thetam = self.mixRuleBehavior.thetam(y, T, self.thetaiBehavior,
                                             self.substances, self.k)
        deltam = self.deltaMixBehavior.deltam(y, T, self.biBehavior,
                                              self.mixRuleBehavior,
                                              self.substances)
        epsilonm = self.epsilonMixBehavior.epsilonm(y, T, self.biBehavior,
                                                    self.mixRuleBehavior,
                                                    self.substances)
        # derivatives
        diffthetam = self.mixRuleBehavior.diffThetam(i, y, T,
                                                     self.thetaiBehavior,
                                                     self.substances, self.k)
        diffbm = self.mixRuleBehavior.diffBm(i, y, T, self.biBehavior,
                                             self.substances)
        diffdeltam = self.deltaMixBehavior.diffDeltam(i, y, T, self.biBehavior,
                                                      self.mixRuleBehavior,
                                                      self.substances)
        diffepsilonm = self.epsilonMixBehavior.diffEpsilonm(
            i, y, T, self.biBehavior, self.mixRuleBehavior, self.substances)
        return _getPhi_i_helper(
            P,
            T,
            Z,
            R_IG,
            bm,
            thetam,
            deltam,
            epsilonm,
            diffthetam,
            diffbm,
            diffdeltam,
            diffepsilonm,
            DBL_EPSILON,
        )

    def getFugacity(self, y, _P: float, _T: float, _V: float,
                    _Z: float) -> float:
        f = 0.0
        for i in range(self.n):
            f += y[i] * self.getPhi_i(i, y, _P, _T, _Z)
        return f * _P

    def getAllProps(self, y, Tref: float, T: float, Pref: float,
                    P: float) -> (Props, Props):
        log = ""

        zs = self.getZfromPT(P, T, y)
        zliq, zvap = np.min(zs), np.max(zs)
        vliq, vvap = zliq * R_IG * T / P, zvap * R_IG * T / P

        MixSubs = MixtureProp(self.substances, y)
        avgMolWt = MixSubs.getMolWt()

        if avgMolWt:
            rholiq, rhovap = avgMolWt * 1e-3 / vliq, avgMolWt * 1e-3 / vvap
        else:
            rholiq, rhovap = 0, 0

        if MixSubs.hasCp():
            igprops = MixSubs.getIGProps(Tref, T, Pref, P)
            log += MixSubs.getCpLog(Tref, T)
            pliq, pvap = self.getCpHSGUA(y, Tref, T, Pref, P)
        else:
            igprops = 0
            pliq, pvap = 0, 0
            log += "Couldn't calculate properties: missing Cp paramaters"

        fl, fv = (
            self.getFugacity(y, P, T, vliq, zliq),
            self.getFugacity(y, P, T, vvap, zvap),
        )

        retPropsliq, retPropsvap = Props(), Props()
        retPropsliq.Z, retPropsvap.Z = zliq, zvap
        retPropsliq.V, retPropsvap.V = vliq, vvap
        retPropsliq.rho, retPropsvap.rho = rholiq, rhovap
        retPropsliq.P, retPropsvap.P = P, P
        retPropsliq.T, retPropsvap.T = T, T
        retPropsliq.Fugacity, retPropsvap.Fugacity = fl, fv
        retPropsliq.IGProps, retPropsvap.IGProps = igprops, igprops
        retPropsliq.Props, retPropsvap.Props = pliq, pvap
        retPropsliq.log, retPropsvap.log = log, log

        return retPropsliq, retPropsvap

    def getdZdT(self, P: float, T: float, y) -> [float, float]:
        h = 1e-5
        z_plus_h = self.getZfromPT(P, T + h, y)
        z_minus_h = self.getZfromPT(P, T - h, y)
        zs = (z_plus_h - z_minus_h) / (2.0 * h)
        return np.min(zs), np.max(zs)

    # TODO speed up this part with numba
    def getDepartureProps(self, y, P, T, V, Z):
        def _Zfunc(v, t):
            bm = self.mixRuleBehavior.bm(y, t, self.biBehavior,
                                         self.substances)
            thetam = self.mixRuleBehavior.thetam(y, t, self.thetaiBehavior,
                                                 self.substances, self.k)
            delta = self.deltaMixBehavior.deltam(y, t, self.biBehavior,
                                                 self.mixRuleBehavior,
                                                 self.substances)
            epsilon = self.epsilonMixBehavior.epsilonm(y, t, self.biBehavior,
                                                       self.mixRuleBehavior,
                                                       self.substances)
            return v / (v - bm) - (thetam /
                                   (R_IG * t)) * v / (v**2 + v * delta +
                                                      epsilon)

        def _dZdT(v, t):
            h = 1e-5
            return (_Zfunc(v, t + h) - _Zfunc(v, t - h)) / (2.0 * h)

        def _URfunc(v, t):
            return t * _dZdT(v, t) / v

        def _ARfunc(v, t):
            return (1.0 - _Zfunc(v, t)) / v

        # calculate UR
        # nhau = _URfunc(V, T)
        UR_RT = quad(_URfunc, V, np.inf, args=(T, ))[0]
        UR = UR_RT * T * R_IG
        # calculate AR
        AR_RT = quad(_ARfunc, V, np.inf, args=(T, ))[0] + np.log(Z)
        AR = AR_RT * T * R_IG
        # calculate HR
        HR_RT = UR_RT + 1.0 - Z
        HR = HR_RT * R_IG * T
        # calculate SR
        SR_R = UR_RT - AR_RT
        SR = SR_R * R_IG
        # calculate GR
        GR_RT = AR_RT + 1 - Z
        GR = GR_RT * R_IG * T

        ret = DeltaProp(0, HR, SR, GR, UR, AR)
        return ret

    def getDeltaDepartureProps(
        self,
        y,
        _Pref: float,
        _Tref: float,
        _Vref: float,
        _Zref: float,
        _P: float,
        _T: float,
        _V: float,
        _Z: float,
    ) -> DeltaProp:
        ref = self.getDepartureProps(y, _Pref, _Tref, _Vref, _Zref)
        state = self.getDepartureProps(y, _P, _T, _V, _Z)
        delta = state.subtract(ref)
        return delta

    def getCpHSGUA(self, y, Tref: float, T: float, Pref: float, P: float):
        zs = self.getZfromPT(P, T, y)
        zsref = self.getZfromPT(Pref, Tref, y)

        zliq, zvap = np.min(zs), np.max(zs)
        zliqref, zvapref = np.min(zsref), np.max(zsref)

        vliq, vvap = zliq * R_IG * T / P, zvap * R_IG * T / P
        vliqref, vvapref = zliqref * R_IG * Tref / Pref, zvapref * R_IG * Tref / Pref
        MixSubs = MixtureProp(self.substances, y)

        igprop = MixSubs.getIGProps(
            Tref, T, Pref,
            P)  # make sure that mixture can handle single substances

        ddp_liq = self.getDeltaDepartureProps(y, Pref, Tref, vliqref, zliqref,
                                              P, T, vliq, zliq)
        ddp_vap = self.getDeltaDepartureProps(y, Pref, Tref, vvapref, zvapref,
                                              P, T, vvap, zvap)
        pliq = igprop.subtract(ddp_liq)
        pvap = igprop.subtract(ddp_vap)

        return pliq, pvap

    def _getPb_guess(self, x, T):
        return _helper_getPb_guess(x, T, self.Pcs, self.Tcs, self.omegas)

    def _getPd_guess(self, y, T):
        return _helper_getPd_guess(y, T, self.Pcs, self.Tcs, self.omegas)

    def getCapPhi_i(self, i: int, y, P: float, T: float) -> float:
        zv = np.max(self.getZfromPT(P, T, y))
        return self.getPhi_i(i, y, P, T, zv)

    def getPSat_i(self, i: int, T: float) -> float:
        has_antoine = self.substances[i].hasAntoine()
        check_antoine_range = self.substances[i].checkAntoineRange(T)

        if has_antoine and check_antoine_range:
            P = self.substances[i].getPvpAntoine(T)
        else:
            P = self.substances[i].getPvpAW(T)
            from EOSPureSubstanceInterface import EOSPureSubstanceInterface

            system = EOSPureSubstanceInterface([self.substances[i]],
                                               self.eosname)
            P, it = system.getPvp(T, P)
        return P

    def getTSat_i(self, i: int, P: float) -> float:
        has_antoine = self.substances[i].hasAntoine()

        if has_antoine:
            t = self.substances[i].getAntoineTsat(P)
        else:
            t = 300.0  # check this!
        return t

    def getTsat(self, P: float):
        tsat = np.asarray([self.getTSat_i(i, P) for i in range(self.n)])
        return tsat

    def getCapPhiSat_i(self, i: int, y, T: float) -> float:
        P = self.getPSat_i(i, T)
        zv = np.max(self.getZfromPT(P, T, y))
        return self.getPhi_i(i, y, P, T, zv)

    def getDefCapPhi_i(self, i: int, y, P: float, T: float) -> float:
        return self.getCapPhi_i(i, y, P, T) / self.getCapPhiSat_i(i, y, T)

    def get_y_eq_12_9(self, x, gamma, Psat, CapPhi, P):
        return x * gamma * Psat / (CapPhi * P)

    def get_P_eq_12_11(self, x, gamma, Psat, CapPhi):
        return np.sum(x * gamma * Psat / CapPhi)

    def getPhiVap(self, y, P, T):
        phivap = np.zeros(self.n, dtype=np.float64)
        zsvap = self.getZfromPT(P, T, y)
        zvap = np.max(zsvap)
        for i in range(self.n):
            phivap[i] = self.getPhi_i(i, y, P, T, zvap)
        return phivap

    def getCapPhi(self, y, P, T):
        capphi = np.ones(self.n, dtype=np.float64)
        for i in range(self.n):
            capphi[i] = self.getCapPhi_i(i, y, P, T)
        return capphi

    def getBubblePointPressure(self,
                               x,
                               T: float,
                               tol=1e3 * DBL_EPSILON,
                               kmax=1000):
        if self.vle_method == "phi-phi":
            return self.getBubblePointPressure_phi_phi(x,
                                                       T,
                                                       tol=tol,
                                                       kmax=kmax)
        elif self.vle_method == "UNIFAC":
            return self.getBubblePointPressure_UNIFAC(x, T, tol=tol, kmax=kmax)
        else:
            raise NotImplementedError("gamma-phi not implemented")

    def getSubstancesIDs(self):
        subs_ids = [s.getSubstanceID() for s in self.substances]
        return subs_ids

    def getPsat(self, T: float):
        Psat = np.asarray([self.getPSat_i(i, T) for i in range(self.n)])
        return Psat

    def getBubblePointPressure_UNIFAC(self,
                                      x,
                                      T,
                                      tol=1e3 * DBL_EPSILON,
                                      kmax=100):

        assert len(x) == self.n
        assert np.sum(x) == 1.0

        x = np.atleast_1d(x)

        gamma = self.unifac_model.getGamma(x, T)
        capphi = np.ones(self.n, dtype=np.float64)
        PSat = self.getPsat(T)

        pb = self.get_P_eq_12_11(x, gamma, PSat, capphi)
        err = 100
        ite = 0

        while err > tol and ite < kmax:
            ite += 1
            y = self.get_y_eq_12_9(x, gamma, PSat, capphi, pb)
            capphi = self.getCapPhi(y, pb, T)
            pb_old = pb
            pb = self.get_P_eq_12_11(x, gamma, PSat, capphi)
            err = np.abs((pb - pb_old) / pb)

        phivap = self.getPhiVap(y, pb, T)
        k = self.get_k_gamma_phi(gamma, PSat, pb, capphi)
        return y, pb, phivap, gamma, k, ite

    def getBubblePointPressure_phi_phi(self,
                                       x,
                                       T,
                                       tol=1e3 * DBL_EPSILON,
                                       kmax=1000):

        assert len(x) == self.n
        assert np.sum(x) == 1.0

        x = np.atleast_1d(x)
        pb = self._getPb_guess(x, T)

        k = np.exp(
            np.log(self.Pcs / pb) + 5.373 * (1 + self.omegas) *
            (1.0 - self.Tcs / T))
        y = x * k / np.sum(x * k)

        err = 100
        ite = 0

        phivap = np.empty(self.n, dtype=np.float64)
        philiq = np.empty(self.n, dtype=np.float64)

        while err > tol and ite < kmax:
            ite += 1

            zsvap = self.getZfromPT(pb, T, y)
            zsliq = self.getZfromPT(pb, T, x)

            zvap = np.max(zsvap)
            zliq = np.min(zsliq)

            for i in range(self.n):
                phivap[i] = self.getPhi_i(i, y, pb, T, zvap)
                philiq[i] = self.getPhi_i(i, x, pb, T, zliq)

            k = philiq / phivap
            y = x * k
            yt = np.sum(y)
            pb = pb * yt
            err = np.abs(1.0 - yt)

        return y, pb, phivap, philiq, k, ite

    ####### DEW POINT ###########

    def getDewPointPressure(self,
                            y,
                            T: float,
                            tol=1e3 * DBL_EPSILON,
                            kmax=1000):
        if self.vle_method == "phi-phi":
            return self.getDewPointPressure_phi_phi(y, T, tol=tol, kmax=kmax)
        elif self.vle_method == "UNIFAC":
            return self.getDewPointPressure_UNIFAC(y, T, tol=tol, kmax=kmax)
        else:
            raise NotImplementedError("gamma-phi not implemented")

    def getDewPointPressure_phi_phi(self,
                                    y,
                                    T,
                                    tol=1e3 * DBL_EPSILON,
                                    kmax=1000):
        assert len(y) == self.n
        assert np.sum(y) == 1.0

        y = np.atleast_1d(y)
        pd = self._getPd_guess(y, T)

        k = np.exp(
            np.log(self.Pcs / pd) + 5.373 * (1 + self.omegas) *
            (1.0 - self.Tcs / T))
        x = y / k
        x = x / np.sum(x)

        err = 100
        ite = 0

        phivap = np.empty(self.n, dtype=np.float64)
        philiq = np.empty(self.n, dtype=np.float64)

        while err > tol and ite < kmax:
            ite += 1

            zsvap = self.getZfromPT(pd, T, y)
            zsliq = self.getZfromPT(pd, T, x)

            zvap = np.max(zsvap)
            zliq = np.min(zsliq)

            for i in range(self.n):
                phivap[i] = self.getPhi_i(i, y, pd, T, zvap)
                philiq[i] = self.getPhi_i(i, x, pd, T, zliq)

            k = philiq / phivap
            x = y / k
            xt = np.sum(x)
            pd = pd / xt
            err = np.abs(1.0 - xt)
            x = x / xt

        return x, pd, phivap, philiq, k, ite

    def getP_eq_12_12(self, y, gamma, Psat, capphi):
        return 1.0 / np.sum(y * capphi / (gamma * Psat))

    def get_x_eq_12_10(self, y, gamma, Psat, capphi, p):
        return y * capphi * p / (gamma * Psat)

    def getDewPointPressure_UNIFAC(self,
                                   y,
                                   T: float,
                                   tol=1e3 * DBL_EPSILON,
                                   kmax=1000):
        assert len(y) == self.n
        assert np.sum(y) == 1.0

        y = np.atleast_1d(y)

        Psat = self.getPsat(T)

        capphi = np.ones(self.n, dtype=np.float64)
        gamma = np.ones(self.n, dtype=np.float64)
        pd = self.getP_eq_12_12(y, gamma, Psat, capphi)
        x = self.get_x_eq_12_10(y, gamma, Psat, capphi, pd)
        x = x / np.sum(x)
        gamma = self.unifac_model.getGamma(x, T)
        pd = self.getP_eq_12_12(y, gamma, Psat, capphi)
        capphi = self.getCapPhi(y, pd, T)

        err = 100
        ite = 0

        while err > tol and ite < kmax:
            ite += 1
            capphi = self.getCapPhi(y, pd, T)
            err2 = 100
            ite2 = 0
            while err2 > tol and ite2 < kmax:
                ite2 += 1
                x = self.get_x_eq_12_10(y, gamma, Psat, capphi, pd)
                x = x / np.sum(x)
                gamma_old = gamma
                gamma = self.unifac_model.getGamma(x, T)
                err2 = np.max(np.abs(gamma_old - gamma))
            pd_old = pd
            pd = self.getP_eq_12_12(y, gamma, Psat, capphi)
            err = np.abs((pd - pd_old) / pd)

        phivap = self.getPhiVap(y, pd, T)
        k = self.get_k_gamma_phi(gamma, Psat, pd, capphi)
        return x, pd, phivap, gamma, k, ite

    def getBubblePointTemperature(self,
                                  x,
                                  P: float,
                                  tol=1e3 * DBL_EPSILON,
                                  kmax=100):
        if self.vle_method == "phi-phi":
            return self.getBubblePointTemperature_phi_phi(x,
                                                          P,
                                                          tol=tol,
                                                          kmax=kmax)
        elif self.vle_method == "UNIFAC":
            return self.getBubblePointTemperature_UNIFAC(x,
                                                         P,
                                                         tol=tol,
                                                         kmax=kmax)
        else:
            raise NotImplementedError("gamma-phi not implemented")

    def get_k_gamma_phi(self, gamma, psat, P, capphi):
        k = gamma * psat / (P * capphi)
        return k

    def getBubblePointTemperature_UNIFAC(self,
                                         x,
                                         P,
                                         tol=1e3 * DBL_EPSILON,
                                         kmax=100):
        assert len(x) == self.n
        x = np.atleast_1d(x)
        assert np.sum(x) == 1.0

        tsat = self.getTsat(P)

        tb = np.float(np.sum(x * tsat))
        capphi = np.ones(self.n, dtype=np.float64)
        psat = self.getPsat(tb)
        gamma = self.unifac_model.getGamma(x, tb)
        k = self.get_k_gamma_phi(gamma, psat, P, capphi)

        tb2 = tb
        f2 = np.sum(x * k) - 1.0

        tb1 = tb * 1.1
        y = x * k / np.sum(x * k)
        capphi = self.getCapPhi(y, P, tb1)
        psat = self.getPsat(tb1)
        gamma = self.unifac_model.getGamma(x, tb1)
        k = self.get_k_gamma_phi(gamma, psat, P, capphi)
        f1 = np.sum(x * k) - 1.0

        y = x * k / np.sum(x * k)

        err = 100
        ite = 0

        while err > tol and ite < kmax:
            ite += 1

            tb = tb1 - f1 * ((tb1 - tb2) / (f1 - f2))
            capphi = self.getCapPhi(y, P, tb)
            psat = self.getPsat(tb)
            gamma = self.unifac_model.getGamma(x, tb)
            k = self.get_k_gamma_phi(gamma, psat, P, capphi)

            y = x * k
            yt = np.sum(y)
            err = np.abs(1.0 - yt)
            y = y / yt
            tb2 = tb1
            tb1 = tb
            f2 = f1
            f1 = np.sum(k * x) - 1.0

        phivap = self.getPhiVap(y, P, tb)
        return y, tb, phivap, gamma, k, ite

    # TODO optimize this! here, I used the secant method for Tb convergence.
    def getBubblePointTemperature_phi_phi(self,
                                          x,
                                          P,
                                          tol=1e3 * DBL_EPSILON,
                                          kmax=100):

        assert len(x) == self.n
        x = np.atleast_1d(x)
        assert np.sum(x) == 1.0

        Tbi = np.empty(self.n)
        for i in range(self.n):
            if self.substances[i].Tb > 0:
                Tbi[i] = self.substances[i].Tb
            else:
                Tbi[i] = 100.0

        tb = _helper_bubble_T_guess_from_wilson(x, P, np.sum(x * Tbi),
                                                self.Pcs, self.Tcs,
                                                self.omegas)

        k = np.exp(
            np.log(self.Pcs / P) + 5.373 * (1 + self.omegas) *
            (1.0 - self.Tcs / tb))

        err = 100
        ite = 0

        tb2 = tb
        f2 = np.sum(x * k) - 1.0

        tb1 = tb * 1.1
        k = np.exp(
            np.log(self.Pcs / P) + 5.373 * (1 + self.omegas) *
            (1.0 - self.Tcs / tb1))
        f1 = np.sum(x * k) - 1.0

        y = x * k / np.sum(x * k)

        phivap = np.empty(self.n, dtype=np.float64)
        philiq = np.empty(self.n, dtype=np.float64)

        while err > tol and ite < kmax:
            ite += 1

            tb = tb1 - f1 * ((tb1 - tb2) / (f1 - f2))

            zsvap = self.getZfromPT(P, tb, y)
            zsliq = self.getZfromPT(P, tb, x)

            zvap = np.max(zsvap)
            zliq = np.min(zsliq)

            for i in range(self.n):
                phivap[i] = self.getPhi_i(i, y, P, tb, zvap)
                philiq[i] = self.getPhi_i(i, x, P, tb, zliq)

            k = philiq / phivap

            y = x * k
            yt = np.sum(y)
            err = np.abs(1.0 - yt)
            y = y / yt
            tb2 = tb1
            tb1 = tb
            f2 = f1
            f1 = np.sum(k * x) - 1.0

        return y, tb, phivap, philiq, k, ite

    def getDewPointTemperature(self,
                               y,
                               P: float,
                               tol=1e3 * DBL_EPSILON,
                               kmax=100):
        if self.vle_method == "phi-phi":
            return self.getDewPointTemperature_phi_phi(y,
                                                       P,
                                                       tol=tol,
                                                       kmax=kmax)
        elif self.vle_method == "UNIFAC":
            return self.getDewPointTemperature_UNIFAC(y, P, tol=tol, kmax=kmax)
        else:
            raise NotImplementedError("gamma-phi not implemented")

    def getDewPointTemperature_UNIFAC(self,
                                      y,
                                      P: float,
                                      tol: float = 1e4 * DBL_EPSILON,
                                      kmax: int = 1000):
        assert len(y) == self.n
        y = np.atleast_1d(y)
        assert np.sum(y) == 1.0

        td = float(np.sum(y * self.getTsat(P)))
        gamma = np.ones(self.n, dtype=np.float64)

        capphi = self.getCapPhi(y, P, td)
        psat = self.getPsat(td)
        x = self.get_x_eq_12_10(y, gamma, psat, capphi, P)
        k = self.get_k_gamma_phi(gamma, psat, P, capphi)
        x = x / np.sum(x)

        td2 = td
        f2 = np.sum(y / k) - 1.0

        td1 = td * 1.1
        capphi = self.getCapPhi(y, P, td1)
        psat = self.getPsat(td1)
        gamma = self.unifac_model.getGamma(x, td1)
        k = self.get_k_gamma_phi(gamma, psat, P, capphi)
        f1 = np.sum(y / k) - 1.0

        x = self.get_x_eq_12_10(y, gamma, psat, capphi, P)
        x = x / np.sum(x)

        err = 100
        ite = 0
        while err > tol and ite < kmax:
            ite += 1

            td = td1 - f1 * ((td1 - td2) / (f1 - f2))
            capphi = self.getCapPhi(y, P, td)
            psat = self.getPsat(td)
            gamma = self.unifac_model.getGamma(x, td)
            k = self.get_k_gamma_phi(gamma, psat, P, capphi)

            x = self.get_x_eq_12_10(y, gamma, psat, capphi, P)
            xt = np.sum(x)
            err = np.abs(1.0 - xt)

            x = x / xt
            td2 = td1
            td1 = td
            f2 = f1
            f1 = np.sum(y / k) - 1.0

        phivap = self.getPhiVap(y, P, td)
        return x, td, phivap, gamma, k, ite

    def getDewPointTemperature_phi_phi(self,
                                       y,
                                       P: float,
                                       tol: float = 1e4 * DBL_EPSILON,
                                       kmax: int = 1000):
        assert len(y) == self.n
        y = np.atleast_1d(y)
        assert np.sum(y) == 1.0

        Tdi = np.empty(self.n)

        for i in range(self.n):
            if self.substances[i].Tb > 0:
                Tdi[i] = self.substances[i].Tb
            else:
                Tdi[i] = 100.0

        td = np.sum(y * Tdi)

        k = np.exp(
            np.log(self.Pcs / P) + 5.373 * (1 + self.omegas) *
            (1.0 - self.Tcs / td))

        td2 = td
        f2 = np.sum(y / k) - 1.0

        td1 = td * 1.1
        k = np.exp(
            np.log(self.Pcs / P) + 5.373 * (1 + self.omegas) *
            (1.0 - self.Tcs / td1))
        f1 = np.sum(y / k) - 1.0

        err = 100
        ite = 0
        # x = np.full(self.n, 1.0 / self.n)
        x = (y / k) / np.sum(y / k)

        phivap = np.empty(self.n, dtype=np.float64)
        philiq = np.empty(self.n, dtype=np.float64)

        while err > tol and ite < kmax:
            ite += 1

            td = td1 - f1 * ((td1 - td2) / (f1 - f2))

            zsvap = self.getZfromPT(P, td, y)
            zsliq = self.getZfromPT(P, td, x)

            zvap = np.max(zsvap)
            zliq = np.min(zsliq)

            for i in range(self.n):
                phivap[i] = self.getPhi_i(i, y, P, td, zvap)
                philiq[i] = self.getPhi_i(i, x, P, td, zliq)

            k = philiq / phivap

            x = y / k
            xt = np.sum(x)
            err = np.abs(1.0 - xt)

            x = x / xt
            td2 = td1
            td1 = td
            f2 = f1
            f1 = np.sum(y / k) - 1.0

        return x, td, phivap, philiq, k, ite

    def getFlash(self,
                 z,
                 P: float,
                 T: float,
                 tol=1e5 * DBL_EPSILON,
                 kmax=1000):
        if self.vle_method == "phi-phi":
            return self.getFlash_phi_phi(z, P, T, tol=tol, kmax=kmax)
        elif self.vle_method == "UNIFAC":
            return self.getFlash_UNIFAC(z, P, T, tol=tol, kmax=kmax)
        else:
            raise NotImplementedError("gamma-phi not implemented")

    def getFlash_phi_phi(self,
                         z,
                         P: float,
                         T: float,
                         tol=1e5 * DBL_EPSILON,
                         kmax=1000):

        assert self.n == len(z)
        z = np.atleast_1d(z)
        assert np.sum(z) == 1.0

        # check if is flash problem
        y, pd, pv, pl, k, ite = self.getDewPointPressure(z, T)
        x, pb, pv, pl, k, ite = self.getBubblePointPressure(z, T)

        if not (pd <= P <= pb):
            raise ValueError("P is not between Pdew and Pbubble")

        v = (pb - P) / (pb - pd)

        err = 100
        ite = 0

        phivap = np.empty(self.n, dtype=np.float64)
        philiq = np.empty(self.n, dtype=np.float64)

        y = np.full(self.n, 1.0 / self.n)
        x = np.full(self.n, 1.0 / self.n)

        while err > tol and ite < kmax:
            ite += 1
            zsvap = self.getZfromPT(P, T, y)
            zsliq = self.getZfromPT(P, T, x)

            zvap = np.max(zsvap)
            zliq = np.min(zsliq)

            for i in range(self.n):
                phivap[i] = self.getPhi_i(i, y, P, T, zvap)
                philiq[i] = self.getPhi_i(i, x, P, T, zliq)

            k = philiq / phivap

            vold = v
            v = _RachfordRice(v, k, z, tol=1e-8, kmax=500)
            x = z / (1.0 + v * (k - 1.0))
            y = k * x
            err = np.abs(v - vold)

        return x, y, v, phivap, philiq, k, ite

    def getFlash_UNIFAC(self,
                        z,
                        P: float,
                        T: float,
                        tol=1e5 * DBL_EPSILON,
                        kmax=1000):

        assert self.n == len(z)
        z = np.atleast_1d(z)
        assert np.sum(z) == 1.0

        # check if is flash problem
        y, pd, pv, pl, k, ite = self.getDewPointPressure(z, T)
        x, pb, pv, pl, k, ite = self.getBubblePointPressure(z, T)

        if not (pd <= P <= pb):
            raise ValueError("P is not between Pdew and Pbubble")

        v = (pb - P) / (pb - pd)

        psat = self.getPsat(T)
        y = np.full(self.n, 1.0 / self.n)
        x = np.full(self.n, 1.0 / self.n)

        err = 100
        ite = 0

        while err > tol and ite < kmax:
            ite += 1
            phivap = self.getPhiVap(y, P, T)
            gamma = self.unifac_model.getGamma(x, T)
            capphi = self.getCapPhi(y, P, T)
            k = self.get_k_gamma_phi(gamma, psat, P, capphi)

            vold = v
            v = _RachfordRice(v, k, z, tol=1e-8, kmax=500)
            x = z / (1.0 + v * (k - 1.0))
            y = k * x
            err = np.abs(v - vold)

        return x, y, v, phivap, gamma, k, ite

    def isobaricBinaryMixtureGenData(self, P, x=None, Punit="Pa", Tunit="K"):

        assert self.n == 2

        if x is None:
            x = x_vec_for_plot

        x = np.atleast_1d(x)

        xmix = np.empty(2, dtype=np.float64)
        y = np.empty(len(x), dtype=np.float64)
        T = np.empty(len(x), dtype=np.float64)
        kvec = np.empty(len(x), dtype=np.float64)
        phi_vap_vec = np.empty(len(x), dtype=np.float64)
        phi_liq_vec = np.empty(len(x), dtype=np.float64)
        pv = np.empty(len(x), dtype=np.float64)
        pl = np.empty(len(x), dtype=np.float64)
        k = np.empty(len(x), dtype=np.float64)

        for i in range(len(x)):
            xmix[0] = x[i]
            xmix[1] = 1.0 - x[i]

            try:
                yres, T[i], pv, pl, k, ite = self.getBubblePointTemperature(
                    xmix, P)
            except:
                try:
                    yres = [0, 0]
                    yres[0] = y[i - 1]
                    T[i] = T[i - 1]
                    x[i] = x[i - 1]
                    pv[0] = phi_vap_vec[i - 1]
                    pl[0] = phi_liq_vec[i - 1]
                    k[0] = kvec[i - 1]
                except:
                    yres = [0, 0]
                    yres[0] = y[i + 1]
                    T[i] = T[i + 1]
                    x[i] = x[i + 1]
                    pv[0] = phi_vap_vec[i + 1]
                    pl[0] = phi_liq_vec[i + 1]
                    k[0] = kvec[i + 1]

            T[i] = conv_unit(T[i], "K", Tunit)
            y[i] = yres[0]
            phi_vap_vec[i] = pv[0]
            phi_liq_vec[i] = pl[0]
            kvec[i] = k[0]

        return x, y, T, phi_vap_vec, phi_liq_vec, kvec

    def isothermalBinaryMixtureGenData(self, T, x=None, Punit="Pa", Tunit="K"):

        assert self.n == 2

        if x is None:
            x = x_vec_for_plot

        x = np.atleast_1d(x)

        xmix = np.empty(2, dtype=np.float64)
        y = np.empty(len(x), dtype=np.float64)
        P = np.empty(len(x), dtype=np.float64)
        kvec = np.empty(len(x), dtype=np.float64)
        phi_vap_vec = np.empty(len(x), dtype=np.float64)
        phi_liq_vec = np.empty(len(x), dtype=np.float64)
        phi_vap = np.empty(len(x), dtype=np.float64)
        phi_liq = np.empty(len(x), dtype=np.float64)
        kv = np.empty(len(x), dtype=np.float64)

        for i in range(len(x)):
            xmix[0] = x[i]
            xmix[1] = 1.0 - x[i]

            try:
                yres, P[
                    i], phi_vap, phi_liq, kv, ite = self.getBubblePointPressure(
                        xmix, T, tol=1e-5, kmax=100)
            except:
                try:
                    yres = [0, 0]
                    yres[0] = y[i - 1]
                    P[i] = P[i - 1]
                    x[i] = x[i - 1]
                    phi_vap[0] = phi_vap_vec[i - 1]
                    phi_liq[0] = phi_liq_vec[i - 1]
                    kv[0] = kvec[i - 1]
                except:
                    yres = [0, 0]
                    yres[0] = y[i + 1]
                    P[i] = P[i + 1]
                    x[i] = x[i + 1]
                    phi_vap[0] = phi_vap_vec[i + 1]
                    phi_liq[0] = phi_liq_vec[i + 1]
                    kv[0] = kv[i + 1]

            P[i] = conv_unit(P[i], "Pa", Punit)
            y[i] = yres[0]
            phi_vap_vec[i] = phi_vap[0]
            phi_liq_vec[i] = phi_liq[0]
            kvec[i] = kv[0]

        return x, y, P, phi_vap_vec, phi_liq_vec, kvec

    def isobaricBinaryMixturePlot(self,
                                  P,
                                  x=None,
                                  Punit="Pa",
                                  Tunit="K",
                                  expfilename="",
                                  plottype="both"):

        assert self.n == 2

        if x is None:
            x = x_vec_for_plot

        x, y, T, phiv, phil, kvec = self.isobaricBinaryMixtureGenData(
            P, x, Punit=Punit, Tunit=Tunit)

        if self.vle_method == "UNIFAC":
            gamma_title = "UNIFAC + "
        else:
            gamma_title = ""

        title = "{} (1) / {} (2) at {:0.3f} {}\n{}Equation of state: {}".format(
            self.substances[0].Name,
            self.substances[1].Name,
            conv_unit(P, "Pa", Punit),
            Punit,
            gamma_title,
            self.eosname,
        )

        vleplot = VLEBinaryDiagrams.VLEBinaryMixturePlot(
            "isobaric", T, x, y, Tunit, title, plottype)
        if os.path.exists(expfilename):
            vleplot.expPlot(expfilename)
        vleplot.plot()

    def setVLEmethod(self, method: str):
        if not self.has_UNIFAC:
            self.vle_method = "phi-phi"
            return
        self.vle_method = method

    def isothermalBinaryMixturePlot(self,
                                    T,
                                    x=None,
                                    Punit="Pa",
                                    Tunit="K",
                                    expfilename="",
                                    plottype="both"):

        assert self.n == 2

        if x is None:
            x = x_vec_for_plot

        x, y, P, phiv, phil, kvec = self.isothermalBinaryMixtureGenData(
            T, x, Punit=Punit, Tunit=Tunit)

        if self.vle_method == "UNIFAC":
            gamma_title = "UNIFAC + "
        else:
            gamma_title = ""

        title = "{} (1) / {} (2) at {:0.3f} {}\n{}Equation of state: {}".format(
            self.substances[0].Name,
            self.substances[1].Name,
            conv_unit(T, "K", Tunit),
            Tunit,
            gamma_title,
            self.eosname,
        )

        vleplot = VLEBinaryDiagrams.VLEBinaryMixturePlot(
            "isothermal", P, x, y, Punit, title, plottype)
        if os.path.exists(expfilename):
            vleplot.expPlot(expfilename)
        vleplot.plot()
Exemple #13
0
 def epsilonm(
     self, y, T: float, bib: BiBehavior, bmb: MixtureRuleBehavior, substances
 ) -> float:
     c = self.c.getCm(y, T, substances)
     b = bmb.bm(y, T, bib, substances)
     return -b * c
Exemple #14
0
 def diffDeltam(
     self, i: int, y, T: float, bib: BiBehavior, bmb: MixtureRuleBehavior, substances
 ) -> float:
     cline = self.c.getDiffCm(i, y, T, substances)
     bline = bmb.diffBm(i, y, T, bib, substances)
     return cline + bline
 def epsilonm(
     self, y, T: float, bib: BiBehavior, bmb: MixtureRuleBehavior, substances
 ) -> float:
     w = getW(y, substances)
     return w * (bmb.bm(y, T, bib, substances)) ** 2
 def deltam(
     self, y, T: float, bib: BiBehavior, bmb: MixtureRuleBehavior, substances
 ) -> float:
     u = 1.0 - getW(y, substances)
     return u * bmb.bm(y, T, bib, substances)