Exemple #1
0
import Model.Classification.Input.get_input as input
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.linear_model import SGDClassifier


# dir = "/Users/chienvn/PycharmProjects/Weather/Files/weather_exclude.csv"
dir = "/Users/chienvn/PycharmProjects/Weather/Files/weather_include.csv"
dir = "/Users/chienvn/PycharmProjects/Weather/Model/Classification/Input/new_weather_Ex.csv"
train, test, train_lb, test_lb = input.get_input_new(dir)


SGD_classification = SGDClassifier(shuffle=True, loss='log')
# SGD_classification = SGDClassifier(loss='hinge')
# SGD_classification = SGDClassifier(shuffle=True, loss='modified_huber')
# SGD_classification = SGDClassifier(loss='squared_hinge', random_state=42)
SGD_classification.fit(train, train_lb)
prediction = SGD_classification.predict(test)
print(confusion_matrix(test_lb, prediction))
print(classification_report(test_lb, prediction))


dir_test = "/Users/chienvn/PycharmProjects/Weather/Model/Classification/Input/new_weather_Test.csv"
new_test, new_test_lb = input.get_input_test(dir_test)
new_prediction = SGD_classification.predict(new_test)
print(confusion_matrix(new_test_lb, new_prediction))
print(classification_report(new_test_lb, new_prediction))
Exemple #2
0
from sklearn.preprocessing import LabelEncoder, MinMaxScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error
from keras.models import Sequential
from keras.layers import Dense, Dropout, LSTM, Flatten
import numpy as np
import pandas as pds
import matplotlib.pyplot as plt
import Model.Classification.Input.get_input as input

dir_test = "/Users/chienvn/PycharmProjects/Weather/Model/Classification/Input/new_weather_Test.csv"
dir_train = "/Users/chienvn/PycharmProjects/Weather/Model/Classification/Input/new_weather_Ex.csv"
train, train_lb = input.get_input_test(dir_train)
test, test_lb = input.get_input_test(dir_test)

encoder = LabelEncoder()

model = Sequential()
model.add(Dense(20, input_dim=60, activation='relu'))
model.add(Dense(20, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])