def __init__(self, embedding_size, hidden_size, num_layers, num_heads, total_key_depth, total_value_depth, filter_size, max_length=1000, input_dropout=0.0, layer_dropout=0.0, attention_dropout=0.0, relu_dropout=0.0, use_mask=False, universal=False, concept=False): """ Parameters: embedding_size: Size of embeddings hidden_size: Hidden size num_layers: Total layers in the Encoder 2 num_heads: Number of attention heads 2 total_key_depth: Size of last dimension of keys. Must be divisible by num_head 40 total_value_depth: Size of last dimension of values. Must be divisible by num_head 40 output_depth: Size last dimension of the final output filter_size: Hidden size of the middle layer in FFN 50 max_length: Max sequence length (required for timing signal) input_dropout: Dropout just after embedding layer_dropout: Dropout for each layer attention_dropout: Dropout probability after attention (Should be non-zero only during training) relu_dropout: Dropout probability after relu in FFN (Should be non-zero only during training) use_mask: Set to True to turn on future value masking """ super(Semantic_Encoder, self).__init__() self.universal = universal self.num_layers = num_layers self.timing_signal = _gen_timing_signal(max_length, hidden_size) if (self.universal): ## for t self.position_signal = _gen_timing_signal(num_layers, hidden_size) params = (hidden_size, total_key_depth or hidden_size, total_value_depth or hidden_size, filter_size, num_heads, _gen_bias_mask(max_length) if use_mask else None, layer_dropout, attention_dropout, relu_dropout) self.embedding_proj = nn.Linear(embedding_size, hidden_size, bias=False) if (self.universal): self.enc = EncoderLayer(*params) else: self.enc = nn.ModuleList( [EncoderLayer(*params) for _ in range(num_layers)]) self.layer_norm = LayerNorm(hidden_size) self.input_dropout = nn.Dropout(input_dropout)
def __init__(self, embedding_size, hidden_size, num_layers, num_heads, total_key_depth, total_value_depth, filter_size, max_length=1000, input_dropout=0.0, layer_dropout=0.0, attention_dropout=0.0, relu_dropout=0.0, universal=False): """ Parameters: embedding_size: Size of embeddings hidden_size: Hidden size num_layers: Total layers in the Encoder num_heads: Number of attention heads total_key_depth: Size of last dimension of keys. Must be divisible by num_head total_value_depth: Size of last dimension of values. Must be divisible by num_head output_depth: Size last dimension of the final output filter_size: Hidden size of the middle layer in FFN max_length: Max sequence length (required for timing signal) input_dropout: Dropout just after embedding layer_dropout: Dropout for each layer attention_dropout: Dropout probability after attention (Should be non-zero only during training) relu_dropout: Dropout probability after relu in FFN (Should be non-zero only during training) """ super(Decoder, self).__init__() self.universal = universal self.num_layers = num_layers self.timing_signal = _gen_timing_signal(max_length, hidden_size) if(self.universal): ## for t self.position_signal = _gen_timing_signal(num_layers, hidden_size) self.mask = _get_attn_subsequent_mask(max_length) params =(hidden_size, total_key_depth or hidden_size, total_value_depth or hidden_size, filter_size, num_heads, _gen_bias_mask(max_length), # mandatory layer_dropout, attention_dropout, relu_dropout) if(self.universal): self.dec = DecoderLayer(*params) else: self.dec = nn.Sequential(*[DecoderLayer(*params) for l in range(num_layers)]) self.embedding_proj = nn.Linear(embedding_size, hidden_size, bias=False) self.layer_norm = LayerNorm(hidden_size) self.input_dropout = nn.Dropout(input_dropout)