def __init__(self,
                 base_model_paths,
                 switch_path,
                 device,
                 soft_choice=False):
        super(SwitchController, self).__init__()
        self.base_models = []
        for base_model_path in base_model_paths:
            base_model = Actor(state_size=2,
                               action_size=1,
                               seed=0,
                               fc1_units=25).to(device)
            base_model.load_state_dict(
                torch.load(base_model_path, map_location=device))
            base_model.eval()
            self.base_models.append(base_model)
        self.switch_model = DQN(2, 2).to(device)
        self.switch_model.load_state_dict(
            torch.load(switch_path, map_location=device))
        self.switch_model.eval()

        self.soft_choice = soft_choice
Exemple #2
0
class Agent():
    """Interacts with and learns from the environment."""
    def __init__(self,
                 state_size,
                 action_size,
                 random_seed,
                 fc1_units,
                 fc2_units,
                 weighted=False,
                 individual=False):
        """Initialize an Agent object.

        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            random_seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(random_seed)
        self.epsilon = EPSILON_MAX

        # Actor Network (w/ Target Network)
        if weighted:
            self.actor_local = Weight_adapter(state_size,
                                              action_size).to(device)
            self.actor_target = Weight_adapter(state_size,
                                               action_size).to(device)
        elif individual:
            self.actor_local = IndividualModel(state_size, action_size,
                                               random_seed,
                                               fc1_units).to(device)
            self.actor_target = IndividualModel(state_size, action_size,
                                                random_seed,
                                                fc1_units).to(device)
        else:
            self.actor_local = Actor(state_size, action_size, random_seed,
                                     fc1_units, fc2_units).to(device)
            self.actor_target = Actor(state_size, action_size, random_seed,
                                      fc1_units, fc2_units).to(device)
        self.actor_optimizer = optim.Adam(self.actor_local.parameters(),
                                          lr=LR_ACTOR)

        # Critic Network (w/ Target Network)
        self.critic_local = Critic(state_size, action_size,
                                   random_seed).to(device)
        self.critic_target = Critic(state_size, action_size,
                                    random_seed).to(device)
        self.critic_optimizer = optim.Adam(self.critic_local.parameters(),
                                           lr=LR_CRITIC,
                                           weight_decay=WEIGHT_DECAY)

        # Noise process
        self.noise = OUNoise(action_size,
                             random_seed,
                             mu=0,
                             theta=0.15,
                             sigma=0.2)

        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE,
                                   random_seed)

        # Make sure target is with the same weight as the source
        self.hard_update(self.actor_target, self.actor_local)
        self.hard_update(self.critic_target, self.critic_local)

        self.t_step = 0

    def step(self, state, action, reward, next_state, done, timestep):
        """Save experience in replay memory, and use random sample from buffer to learn."""
        # Save experience / reward
        self.memory.add(state, action, reward, next_state, done)

        if len(self.memory) > LEARN_START:
            # Learn every UPDATE_EVERY time steps.
            self.t_step = (self.t_step + 1) % UPDATE_EVERY
            if self.t_step == 0:
                # Learn, if enough samples are available in memory
                if len(self.memory) > BATCH_SIZE:
                    for _ in range(UPDATES_PER_STEP):
                        experiences = self.memory.sample()
                        self.learn(experiences, GAMMA)

    def act(self, state, add_noise=True):
        """Returns actions for given state as per current policy."""

        state = torch.from_numpy(state).float().to(device)

        self.actor_local.eval()
        with torch.no_grad():
            action = self.actor_local(state).cpu().data.numpy()
        #print(action)
        self.actor_local.train()

        if add_noise:
            tem_noise = self.noise.sample()
            action += self.epsilon * tem_noise
        # print(tem_noise, np.clip(action, -1, 1))
        return np.clip(action, -1, 1)

    def reset(self):
        self.noise.reset()

    def learn(self, experiences, gamma):
        """Update policy and value parameters using given batch of experience tuples.
        Q_targets = r + ? * critic_target(next_state, actor_target(next_state))
        where:
            actor_target(state) -> action
            critic_target(state, action) -> Q-value

        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences

        # ---------------------------- update critic ---------------------------- #
        # Get predicted next-state actions and Q values from target models
        actions_next = self.actor_target(next_states)
        Q_targets_next = self.critic_target(next_states, actions_next)

        # Compute Q targets for current states (y_i)
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))

        # Compute critic loss
        Q_expected = self.critic_local(states, actions)
        critic_loss = F.mse_loss(Q_expected, Q_targets)

        # Minimize the loss
        self.critic_optimizer.zero_grad()
        critic_loss.backward()
        #torch.nn.utils.clip_grad_norm_(self.critic_local.parameters(), 1)
        self.critic_optimizer.step()

        # ---------------------------- update actor ---------------------------- #
        # Compute actor loss
        actions_pred = self.actor_local(states)
        actor_loss = -self.critic_local(states, actions_pred).mean()

        # Minimize the loss
        self.actor_optimizer.zero_grad()
        actor_loss.backward()
        self.actor_optimizer.step()

        # ----------------------- update target networks ----------------------- #
        self.soft_update(self.critic_local, self.critic_target, TAU)
        self.soft_update(self.actor_local, self.actor_target, TAU)

        # ---------------------------- update noise ---------------------------- #
        if self.epsilon - EPSILON_DECAY > EPSILON_MIN:
            self.epsilon -= EPSILON_DECAY
        else:
            self.epsilon = EPSILON_MIN

        self.noise.reset()

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        ?_target = t*?_local + (1 - t)*?_target

        Params
        ======
            local_model: PyTorch model (weights will be copied from)
            target_model: PyTorch model (weights will be copied to)
            tau (float): interpolation parameter
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)

    def hard_update(self, target, source):
        for target_param, param in zip(target.parameters(),
                                       source.parameters()):
            target_param.data.copy_(param.data)
Exemple #3
0
# this file is to record the NN controller parameters into a txt file to be used 
# for Bernstein polynomial approximation by the tool of ReachNN
from Model import IndividualModel, Actor
import torch
import numpy as np


# NAME = 'direct_distill'
# trained_model = IndividualModel(state_size=3, action_size=1, seed=0, fc1_units=25)
# trained_model.load_state_dict(torch.load('./'+ NAME +'.pth'))
# trained_model.eval()
trained_model = Actor(state_size=3, action_size=1, seed=0, fc1_units=25)
trained_model.load_state_dict(torch.load("./actors/actor_0.43600.pth"))
trained_model.eval()
bias_list = []
weight_list = []
for name, param in trained_model.named_parameters():
	if 'bias' in name:
		bias_list.append(param.detach().cpu().numpy())
		
	if 'weight' in name:
		weight_list.append(param.detach().cpu().numpy())
print(len(weight_list), np.linalg.norm(weight_list[0]), np.linalg.norm(weight_list[1]))
# assert False
all_param = []

for i in range(len(bias_list)):
	for j in range(len(bias_list[i])):
		for k in range(weight_list[i].shape[1]):
			all_param.append(weight_list[i][j, k])
		all_param.append(bias_list[i][j])
Exemple #4
0
Variable = lambda *args, **kwargs: autograd.Variable(*args, **kwargs).cuda(
) if USE_CUDA else autograd.Variable(*args, **kwargs)
batch_size = 128
gamma = 0.99
epsilon_start = 1.0
epsilon_final = 0.01
epsilon_decay = 3000
replay_buffer = ReplayBuffer(int(5e3))
epsilon_by_frame = lambda frame_idx: epsilon_final + (
    epsilon_start - epsilon_final) * math.exp(-1. * frame_idx / epsilon_decay)

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

model_1 = Actor(state_size=3, action_size=1, seed=0, fc1_units=25).to(device)
model_1.load_state_dict(torch.load("./actors/actor_0.43600.pth"))
model_1.eval()

# model_2 = IndividualModel(state_size=3, action_size=1, seed=0, fc1_units=50).to(device)
# model_2.load_state_dict(torch.load("./actors/actor_1.0_2800.pth"))
# model_2.eval()


def MController(state):
    action = 0.634 * state[0] - 0.296 * state[1] - 0.153 * state[
        2] + 0.053 * state[0]**2 - 1.215 * state[0]**3
    return action


Individual = IndividualModel(state_size=3, action_size=1, seed=0,
                             fc1_units=25).to(device)
Exemple #5
0
class Agent():
    """
    The Agent interact with and learn from the Environment
    """
    def __init__(self, state_size, action_size, num_agents, random_seed):
        """
        Initialize Agent Object.
        ----------------------------------------
        Parameters
        ----------------------------------------
        state_size (int): dimension of each state
        action_size (int): dimension of each action
        num_agents (int): number of agents
        random_seed(int): random seed
        
        """

        self.state_size = state_size
        self.action_size = action_size
        self.num_agents = num_agents
        self.seed = random.seed(random_seed)
        self.eps = EPS_START
        self.eps_decay = 1 / (EPS_EP_END * LEARN_NUM)
        self.timestep = 0

        # <--------------- Actor Network ----------->
        self.actor_local = Actor(state_size, action_size,
                                 random_seed).to(device)
        self.actor_target = Actor(state_size, action_size,
                                  random_seed).to(device)
        self.actor_optimizer = optim.Adam(self.actor_local.parameters(),
                                          lr=LR_ACTOR)

        # <--------------- Critic Network ---------->
        self.critic_local = Critic(state_size, action_size,
                                   random_seed).to(device)
        self.critic_target = Critic(state_size, action_size,
                                    random_seed).to(device)
        self.critic_optimizer = optim.Adam(self.critic_local.parameters(),
                                           lr=LR_CRITIC,
                                           weight_decay=WEIGHT_DECAY)

        # <--------------- Noise --------------->
        self.noise = OUNoise((num_agents, action_size), random_seed)

        # <----------- Replay Memory ------------->
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE,
                                   random_seed)

    def step(self, state, action, reward, next_state, done, agent_number):
        """
        Save Experience in Replay Memory and select randomly from the buffer to learn """

        self.timestep += 1

        # <-------Save Experience --------->
        self.memory.add(state, action, reward, next_state, done)

        # <-------- Learn at given interval, if enough samples are available in the memory ----------->
        if len(self.memory) > BATCH_SIZE and self.timestep % LEARN_EVERY == 0:
            for _ in range(LEARN_NUM):
                experiences = self.memory.sample()
                self.learn(experiences, GAMMA, agent_number)

    # <-------Obtain Action------------>
    def act(self, states, add_noise):
        """
        Returns Actions for both agents given their respective states and based on the current Policy
        """

        states = torch.from_numpy(states).float().to(device)
        actions = np.zeros((self.num_agents, self.action_size))
        self.actor_local.eval()
        with torch.no_grad():
            # Obtain action for each agent and concatenate them
            for agent_num, state in enumerate(states):
                action = self.actor_local(state).cpu().data.numpy()
                actions[agent_num, :] = action
        self.actor_local.train()

        #add noise to actions
        if add_noise:
            actions += self.eps * self.noise.sample()
        actions = np.clip(actions, -1, 1)
        return actions

    def reset(self):
        self.noise.reset()

    def learn(self, experiences, gamma, agent_number):
        """
        Update the policy and Value Parameters using given batch of experience tuples
        Q_targets = r + y * critic_target(next_state, actor_target(next_state))
        
        actor_target(state)          --- Action
        critic_target(state, action) --- Q-Value
        
        -----------------------------------------    
        Parameters
        -----------------------------------------
        experiences (Tuple[torch.Tensor]) -- tuple(s,a,r,s',done)
        gamma (float)                     -- discount factor
        
        """

        states, actions, rewards, next_states, dones = experiences

        # <----------------------- Update the Critic -------------------->

        #Get predicted next-state actions and Q-values from target models
        actions_next = self.actor_target(next_states)

        # Construct Next actions vector relative to the agent
        if agent_number == 0:
            actions_next = torch.cat((actions_next, actions[:, 2:]), dim=1)
        else:
            actions_next = torch.cat((actions[:, :2], actions_next), dim=1)

        # Compute Q tarets for current states (y_i)
        Q_targets_next = self.critic_target(next_states, actions_next)
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))

        # Compute Critic Loss
        Q_expected = self.critic_local(states, actions)
        critic_loss = F.mse_loss(Q_expected, Q_targets)

        # Minimize the Loss
        self.critic_optimizer.zero_grad()
        critic_loss.backward()
        torch.nn.utils.clip_grad_norm_(self.critic_local.parameters(), 1)
        self.critic_optimizer.step()

        # <----------------------- Update the Actor -------------------->

        # Compute Loss
        actions_pred = self.actor_local(states)

        # Construct action prediction Vector relative to reach agent
        if agent_number == 0:
            actions_pred = torch.cat((actions_pred, actions[:, 2:]), dim=1)
        else:
            actions_pred = torch.cat((actions[:, :2], actions_pred), dim=1)

        # Compute Actor Loss
        actor_loss = -self.critic_local(states, actions_pred).mean()

        # Minimize the Loss
        self.actor_optimizer.zero_grad()
        actor_loss.backward()
        self.actor_optimizer.step()

        # <----------------------- Update the Target Networks -------------------->
        self.soft_update(self.critic_local, self.critic_target, TAU)
        self.soft_update(self.actor_local, self.actor_target, TAU)

        # <----------------------- Update the noise -------------------->
        self.eps -= self.eps_decay
        self.eps = max(self.eps, EPS_FINAL)
        self.noise.reset()

    # <----------------------- Perform Soft Update -------------------->
    def soft_update(self, local_model, target_model, tau):
        """
        Soft Update model parameters
        
        θ_target = τ*θ_local + (1 - τ)*θ_target
        
        ---------------------------
        Parameters
        ---------------------------
        local_model: Weights will be copied fron this pytorch model
        target_model: weights will be copied to this pytorch model
        tau (float): Interpolation Parameter
        
        """

        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)
Exemple #6
0
class Agent():
    """Interacts with and learns from the environment."""
    def __init__(self, state_size, action_size, random_seed):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            random_seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(random_seed)

        # Actor Network (w/ Target Network)
        self.actor_local = Actor(state_size, action_size,
                                 random_seed).to(device)
        self.actor_target = Actor(state_size, action_size,
                                  random_seed).to(device)
        self.actor_optimizer = optim.Adam(self.actor_local.parameters(),
                                          lr=LR_ACTOR)

        # Critic Network (w/ Target Network)
        self.critic_local = Critic(state_size, action_size,
                                   random_seed).to(device)
        self.critic_target = Critic(state_size, action_size,
                                    random_seed).to(device)
        self.critic_optimizer = optim.Adam(self.critic_local.parameters(),
                                           lr=LR_CRITIC,
                                           weight_decay=WEIGHT_DECAY)

        self.hard_copy_weights(self.actor_target, self.actor_local)
        self.hard_copy_weights(self.critic_target, self.critic_local)

        # Noise process
        self.noise = OUNoise(action_size, random_seed)

        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE,
                                   random_seed)

    def hard_copy_weights(self, target, source):
        """ copy weights from source to target network (part of initialization)"""
        for target_param, param in zip(target.parameters(),
                                       source.parameters()):
            target_param.data.copy_(param.data)

    def step(self, state, action, reward, next_state, done):
        """Save experience in replay memory, and use random sample from buffer to learn."""
        # Save experience / reward
        self.memory.add(state, action, reward, next_state, done)

        # Learn, if enough samples are available in memory
        if len(self.memory) > BATCH_SIZE:
            experiences = self.memory.sample()
            self.learn(experiences, GAMMA)

    def act(self, state, add_noise=True):
        """Returns actions for given state as per current policy."""
        state = torch.from_numpy(state).float().to(device)
        self.actor_local.eval()
        with torch.no_grad():
            action = self.actor_local(state).cpu().data.numpy()
        self.actor_local.train()
        if add_noise:
            action += self.noise.sample()
        return np.clip(action, -1, 1)

    def reset(self):
        self.noise.reset()

    def learn(self, experiences, gamma):
        """Update policy and value parameters using given batch of experience tuples.
        Q_targets = r + γ * critic_target(next_state, actor_target(next_state))
        where:
            actor_target(state) -> action
            critic_target(state, action) -> Q-value
        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences

        # ---------------------------- update critic ---------------------------- #
        # Get predicted next-state actions and Q values from target models
        actions_next = self.actor_target(next_states)
        Q_targets_next = self.critic_target(next_states, actions_next)
        # Compute Q targets for current states (y_i)
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
        # Compute critic loss
        Q_expected = self.critic_local(states, actions)
        critic_loss = F.mse_loss(Q_expected, Q_targets)
        # Minimize the loss
        self.critic_optimizer.zero_grad()
        critic_loss.backward()
        torch.nn.utils.clip_grad_norm_(self.critic_local.parameters(), 1)
        self.critic_optimizer.step()

        # ---------------------------- update actor ---------------------------- #
        # Compute actor loss
        actions_pred = self.actor_local(states)
        actor_loss = -self.critic_local(states, actions_pred).mean()
        # Minimize the loss
        self.actor_optimizer.zero_grad()
        actor_loss.backward()
        self.actor_optimizer.step()

        # ----------------------- update target networks ----------------------- #
        self.soft_update(self.critic_local, self.critic_target, TAU)
        self.soft_update(self.actor_local, self.actor_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target
        Params
        ======
            local_model: PyTorch model (weights will be copied from)
            target_model: PyTorch model (weights will be copied to)
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)
Exemple #7
0
class Agent():
    def __init__(self, state_size, action_size, random_seed, num_agents=1):
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(random_seed)
        self.num_agents = num_agents

        #Raw and Targer Actor Network
        self.actor_local = Actor(state_size, action_size,
                                 random_seed).to(device)
        self.actor_target = Actor(state_size, action_size,
                                  random_seed).to(device)
        self.actor_optimizer = optim.Adam(self.actor_local.parameters(),
                                          lr=LR_ACTOR)

        ##copying the weights of the raw network to the target network
        for target, local in zip(self.actor_target.parameters(),
                                 self.actor_local.parameters()):
            target.data.copy_(local.data)

        #Raw and Target CRITIC Network
        self.critic_local = Critic(state_size * num_agents,
                                   action_size * num_agents,
                                   random_seed).to(device)
        self.critic_target = Critic(state_size * num_agents,
                                    action_size * num_agents,
                                    random_seed).to(device)
        self.critic_optimizer = optim.Adam(self.critic_local.parameters(),
                                           lr=LR_CRITIC,
                                           weight_decay=WEIGHT_DECAY)

        ##copying the weights of the raw network to the target network
        for target, local in zip(self.critic_target.parameters(),
                                 self.critic_local.parameters()):
            target.data.copy_(local.data)

        ##Creating Noise Process
        self.noise = OrnUhlNoise(action_size, random_seed)

        ###Replay Memory; in MADDPG, the replay buffer is common to all agents
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE,
                                   random_seed)

    def step(self, state, action, reward, next_state, done):
        """Shared Memory; to save experiences in replay memory, and use random sample from buffer to learn"""
        #check if this is accurately implemented in training the MADDPG agent

        self.memory.add(state, action, reward, next_state, done)

        #start learning if the buffer size is full
        if len(self.memory) > BATCH_SIZE:
            experiences = self.memory.sample()
            self.learn(experiences, GAMMA)

    def act(self, state, noise=0.0):
        """uses current ploicy to output the next action"""
        ''' Please understand the below code snippet in detail '''
        state = torch.from_numpy(state).float().to(device)
        self.actor_local.eval()
        with torch.no_grad():
            action = self.actor_local(state).cpu().data.numpy()
        self.actor_local.train()
        if ADD_OU_NOISE:
            action += self.noise.sample() * noise
        return np.clip(action, -1, 1)

    def reset(self):
        self.noise.reset()

    def learn(self, experiences, gamma):
        ''' only used in traininf DDPG agent, not for MADDPG'''
        #updates policy and value params using a givrn batch of experience tuples

        states, actions, rewards, next_states, dones = experiences

        #################update critic################################
        next_actions = self.actor_target(next_states)
        next_Q_targets = self.critic_target(next_states, next_actions)
        Q_targets = rewards + (gamma * next_Q_targets *
                               (1 - dones))  #Q targets for current states
        Q_Expected = self.critic_local(states, actions)
        critic_loss = F.mse_loss(Q_Expected, Q_targets)
        #minimizing the loss
        self.critic_optimizer.zero_grad()
        critic_loss.backward()
        self.critic_optimizer.step()

        ###############update actor##################################
        ##computing actions_loss
        actions_pred = self.actor_local(states)
        actor_loss = -self.critic_local(states, actions_pred).mean()
        ##minimizing the loss
        self.actor_optimizer.zero_grad()
        actor_loss.backward()
        self.actor_optimizer.step()

        ###############update target networks######################
        self.soft_update(self.critic_local, self.critic_target, TAU)
        self.soft_update(self.actor_local, self.actor_target, TAU)

    def soft_update(self, local_model, target_model, tau):

        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)