import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

from Model import Net

model = Net(10)  #10 classes

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

from dataset import MeshData

DataObject = MeshData(
    '/home/prathmesh/Desktop/SoC-2020/ModelNet10_stl/ModelNet10')
dataLoad = torch.utils.data.DataLoader(DataObject, batch_size=1, shuffle=True)
batch = next(iter(dataLoad))
print(len(batch))

max_epochs = 30
loss_list = []
for epochs in range(max_epochs):
    #print('e =',epochs)
    running_loss = 0.0
    for i, data in enumerate(dataLoad, 0):
        x, y = data
        x = x[0].float().to(device)
        #y = y.float()
        y = y[0].to(device)
        optimizer.zero_grad()
    np.random.shuffle(indices)
train_indices, val_indices = indices[split:], indices[:split]

train_sampler = SubsetRandomSampler(train_indices)
valid_sampler = SubsetRandomSampler(val_indices)

train_load = torch.utils.data.DataLoader(dataset,
                                         batch_size=batch_size,
                                         sampler=train_sampler)

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
net = Net()
net.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.7)

# Training
for epoch in range(5):
    for i, data in enumerate(train_load, 0):
        inputs, labels, name = data
        inputs = inputs.float()
        inputs, labels = inputs.to(device), labels.to(device)

        # zero the parameter gradients
        optimizer.zero_grad()

        # forward + backward + optimize
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
Exemple #3
0
class Trainer:
    def __init__(self, hidden_dim, buffer_size, gamma, batch_size, device, writer):
        self.env = make("connectx", debug=True)
        self.device = device
        self.policy = Net(self.env.configuration.columns * self.env.configuration.rows, hidden_dim,
                          self.env.configuration.columns).to(
            device)

        self.target = Net(self.env.configuration.columns * self.env.configuration.rows, hidden_dim,
                          self.env.configuration.columns).to(
            device)
        self.enemyNet = Net(self.env.configuration.columns * self.env.configuration.rows, hidden_dim,
                            self.env.configuration.columns).to(
            device)
        self.target.load_state_dict(self.policy.state_dict())
        self.target.eval()
        self.buffer = ExperienceReplay(buffer_size)
        self.enemy = "random"
        self.trainingPair = self.env.train([None, self.enemy])
        self.loss_function = nn.MSELoss()
        self.optimizer = optim.Adam(params=self.policy.parameters(), lr=0.001)
        self.gamma = gamma
        self.batch_size = batch_size

        self.first = True
        self.player = 1
        self.writer = writer

    def agent(self, observation, configuration):
        with torch.no_grad():
            state = torch.tensor(observation['board'], dtype=torch.float)
            reshaped = self.reshape(state)
            action = self.takeAction(self.enemyNet(reshaped).view(-1), reshaped, 0, False)
            return action

    def switch(self):
        self.trainingPair = self.env.train([None, "negamax"])
        self.enemy = "negamax"

    def switchPosition(self):
        self.env.reset()
        if self.first:
            self.trainingPair = self.env.train([self.enemy, None])
            self.player = 2
        else:
            self.trainingPair = self.env.train([None, self.enemy])
            self.player = 1
        self.first = not self.first

    def load(self, path):
        self.policy.load_state_dict(torch.load(path))

    def synchronize(self):
        self.target.load_state_dict(self.policy.state_dict())

    def save(self, name):
        torch.save(self.policy.state_dict(), name)

    def reset(self):
        self.env.reset()
        return self.trainingPair.reset()

    def step(self, action):
        return self.trainingPair.step(action)

    def addExperience(self, experience):
        self.buffer.append(experience)

    def epsilon(self, maxE, minE, episode, lastEpisode):
        return (maxE - minE) * max((lastEpisode - episode) / lastEpisode, 0) + minE

    def change_reward(self, reward, done):
        if done and reward == 1:
            return 10
        if done and reward == -1:
            return -10
        if reward is None and done:
            return -20
        if done:
            return 1
        if reward == 0:
            return 1 / 42
        else:
            return reward

    def change_reward_streak(self, reward, done, reshapedBoard, action, useStreak):
        if done and reward == 1:
            return 20
        if done and reward == -1:
            return -20
        if reward is None and done:
            return -40
        if done:
            return 1
        if reward == 0 & useStreak:
            return 1 / 42 + self.streakReward(self.player, reshapedBoard, action)
        if reward == 0:
            return 1 / 42
        else:
            return reward

    def streakReward(self, player, reshapedBoard, action):
        verticalReward = 0
        horizontalReward = 0
        if self.longestVerticalStreak(player, reshapedBoard, action) == 3:
            verticalReward = 3
        if self.longestHorizontalStreak(player, reshapedBoard, action) == 3:
            horizontalReward = 3
        return verticalReward + horizontalReward + self.longestDiagonalStreak(player, reshapedBoard, action)

    def longestVerticalStreak(self, player, reshapedBoard, action):
        count = 0
        wasZero = False
        for i in range(5, 0, -1):
            if reshapedBoard[0][player][i][action] == 0:
                wasZero = True
            if reshapedBoard[0][player][i][action] == 1 & wasZero:
                count = 0
                wasZero = False
            count += reshapedBoard[0][player][i][action]
        if reshapedBoard[0][0][0][action] == 0:
            return 0
        return count

    def longestHorizontalStreak(self, player, reshapedBoard, action):
        count = 0
        rowOfAction = self.rowOfAction(player, reshapedBoard, action)
        wasZero = False
        for i in range(7):
            if reshapedBoard[0][player][rowOfAction][i] == 0:
                wasZero = True
            if reshapedBoard[0][player][rowOfAction][i] == 1 & wasZero:
                count = 0
                wasZero = False
            count += reshapedBoard[0][player][rowOfAction][i]
        return count

    def longestDiagonalStreak(self, player, reshapedBoard, action):
        rowOfAction = self.rowOfAction(player, reshapedBoard, action)
        for row in range(4):
            for col in range(5):
                if reshapedBoard[0][player][row][col] == reshapedBoard[0][player][row + 1][col + 1] == \
                        reshapedBoard[0][player][row + 2][col + 2] == 1 and self.actionInDiagonal1(action, row, col,
                                                                                                   rowOfAction):
                    return 3
        for row in range(5, 1, -1):
            for col in range(4):
                if reshapedBoard[0][player][row][col] == reshapedBoard[0][player][row - 1][col + 1] == \
                        reshapedBoard[0][player][row - 2][col + 2] == 1 and self.actionInDiagonal2(action, row, col,
                                                                                                   rowOfAction):
                    return 3
        return 0

    def actionInDiagonal1(self, action, row, col, rowOfAction):
        return (rowOfAction == row and action == col or
                rowOfAction == row + 1 and action == col + 1 or
                rowOfAction == row + 2 and action == col + 2)

    def actionInDiagonal2(self, action, row, col, rowOfAction):
        return (rowOfAction == row and action == col or
                rowOfAction == row - 1 and action == col + 1 or
                rowOfAction == row - 2 and action == col + 2)

    def rowOfAction(self, player, reshapedBoard, action):
        rowOfAction = 10
        for i in range(6):
            if reshapedBoard[0][player][i][action] == 1:
                rowOfAction = min(i, rowOfAction)
        return rowOfAction

    def policyAction(self, board, episode, lastEpisode, minEp=0.1, maxEp=0.9):
        reshaped = self.reshape(torch.tensor(board))
        output = self.policy(reshaped).view(-1)
        return self.takeAction(output, reshaped, self.epsilon(maxEp, minEp, episode, lastEpisode))

    def takeAction(self, actionList: torch.tensor, board, epsilon, train=True):
        if (np.random.random() < epsilon) & train:
            # invalide actions rein=geht nicht
            #return torch.tensor(np.random.choice(len(actionList))).item()
            return np.random.choice([i for i in range(len(actionList)) if board[0][0][0][i] == 1])
        else:
            for i in range(7):
                if board[0][0][0][i] == 0:
                    actionList[i] = float('-inf')
            return torch.argmax(actionList).item()

    def reshape(self, board: torch.tensor, unsqz=True):
        tensor = board.view(-1, 7).long()
        # [0] = wo kann er reinwerfen(da wo es geht, steht eine 1), [1] = player1 (da wo es geht steht eine 0), [2] = player2 (da wo es geht steht eine 0)
        a = F.one_hot(tensor, 3).permute([2, 0, 1])
        b = a[:, :, :]
        if unsqz:
            return torch.unsqueeze(b, 0).float().to(self.device)
        return b.float().to(self.device)

    def preprocessState(self, state):
        state = self.reshape(torch.tensor(state), True)
        return state

    def trainActionFromPolicy(self, state, action):
        state = self.preprocessState(state)
        value = self.policy(state).view(-1).to(self.device)
        return value[action].to(self.device)

    def trainActionFromTarget(self, next_state, reward, done):
        next_state = self.preprocessState(next_state)
        target = self.target(next_state)
        target = torch.max(target, 1)[0].item()
        target = reward + ((self.gamma * target) * (1 - done))
        return torch.tensor(target).to(self.device)

    def train(self):
        if len(self.buffer) > self.batch_size:
            self.optimizer.zero_grad()
            states, actions, rewards, next_states, dones = self.buffer.sample(self.batch_size, self.device)
            meanLoss = 0
            for i in range(self.batch_size):
                value = self.trainActionFromPolicy(states[i], actions[i])
                target = self.trainActionFromTarget(next_states[i], rewards[i], dones[i])
                loss = self.loss_function(value, target)
                loss.backward()
                meanLoss += loss
            self.optimizer.step()
            return meanLoss / self.batch_size
        preprcess.Save()

    print('wordbag: ')
    print(preprcess.wordbag)
    print('label_list: ')
    print(preprcess.label_list)

    x = np.array(preprcess.wordbag)
    y = np.array(preprcess.label_list)
    x = torch.from_numpy(x).type(torch.FloatTensor)
    y = torch.from_numpy(y)
    x, y = Variable(x), Variable(y)

    net = Net()

    optimizer = torch.optim.ASGD(net.parameters(), lr=0.002)
    criterion = torch.nn.CrossEntropyLoss()

    for t in range(10000):
        out = net(x)
        loss = criterion(out, y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if t % 100 == 0:
            prediction = torch.max(F.softmax(out), 1)[1]
            pred_y = prediction.data.numpy().squeeze()
            target_y = y.data.numpy()
            accuracy = sum(pred_y == target_y) / 652
            print('------------------')
Exemple #5
0
    acc_total = []
    pred_total = []
    true_total = []

    for i in tqdm(range(TOTAL)):
        image_shape = full_dataset.x_data.shape[1:]

        device = torch.device(CUDA_N if torch.cuda.is_available() else 'cpu')
        torch.manual_seed(SEED[i])
        net = Net(image_shape, NUM_CLASS)
        net.to(device)
        print(net)

        softmax = nn.Softmax()
        criterion = nn.CrossEntropyLoss()
        optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.1)

        loss_list = []
        train_acc_list = []
        test_acc_list = []

        pred_temp = []
        true_temp = []

        for epoch in range(EPOCH):
            net.train()
            running_loss = 0
            total = train_size
            correct = 0

            for step, images_labels in enumerate(train_loader):
Exemple #6
0
    model = nn.DataParallel(model)

if args.reloadModel:
        model_fp = "model4/resnet18_model2_17.pth"
        model.load_state_dict(torch.load(model_fp)['modelRoadMap_state_dict'])
        print("model_loaded")


model.to(device)


# In[ ]:


# Optimizer
optimizer = optim.Adam(model.parameters(), lr=args.lr)


# In[ ]:


# loss func

def modify_output_for_loss_fn(loss_fn, output, dim):
    if loss_fn == "ce":
        return output
    if loss_fn == "mse":
        return F.softmax(output, dim=dim)
    if loss_fn == "nll":
        return F.log_softmax(output, dim=dim)
    if loss_fn in ["bce", "wbce", "wbce1"]:
Exemple #7
0
from torch.utils.data import DataLoader
from torchvision import transforms

composed = transforms.Compose([Normalize(), ToTensor()])

trainset = ImagesDataset(csv_file=root_dir + 'train.csv',
                         root_dir=root_dir,
                         transform=composed)
trainloader = DataLoader(trainset, batch_size=4, shuffle=True, num_workers=4)
"""
Train data
"""
import torch.optim as optim

criterion = nn.MSELoss()
optimizer = optim.SGD(net.parameters(),
                      lr=0.001,
                      momentum=0.9,
                      weight_decay=1e-6)

for epoch in range(num_epoch):
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data['image'], data['label']
        inputs, labels = inputs.to(device), labels.to(device)

        optimizer.zero_grad()

        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
Exemple #8
0
def main():
    global opt, model
    opt = parser.parse_args()
    print(opt)

    cuda = opt.cuda
    if cuda and not torch.cuda.is_available():
        raise Exception("No GPU found, please run without --cuda")

    opt.seed = random.randint(1, 10000)
    print("Random Seed: ", opt.seed)
    torch.manual_seed(opt.seed)
    if cuda:
        torch.cuda.manual_seed(opt.seed)

    cudnn.benchmark = True

    print("===> Loading datasets")
    train_set = DatasetFromHdf5("data/train.h5")
    training_data_loader = DataLoader(dataset=train_set,
                                      num_workers=opt.threads,
                                      batch_size=opt.batchSize,
                                      shuffle=True)

    print("===> Building model")
    model = Net()
    criterion = nn.MSELoss(size_average=False)

    print("===> Setting GPU")
    if cuda:
        model = torch.nn.DataParallel(model).cuda()
        criterion = criterion.cuda()

    # optionally resume from a checkpoint
    if opt.resume:
        if os.path.isfile(opt.resume):
            print("=> loading checkpoint '{}'".format(opt.resume))
            checkpoint = torch.load(opt.resume)
            opt.start_epoch = checkpoint["epoch"] + 1
            model.load_state_dict(checkpoint["model"].state_dict())
        else:
            print("=> no checkpoint found at '{}'".format(opt.resume))

    # optionally copy weights from a checkpoint
    if opt.pretrained:
        if os.path.isfile(opt.pretrained):
            print("=> loading model '{}'".format(opt.pretrained))
            weights = torch.load(opt.pretrained)
            model.load_state_dict(weights['model'].state_dict())
        else:
            print("=> no model found at '{}'".format(opt.pretrained))

    print("===> Setting Optimizer")
    optimizer = optim.SGD(model.parameters(),
                          lr=opt.lr,
                          momentum=opt.momentum,
                          weight_decay=opt.weight_decay)

    print("===> Training")
    for epoch in range(opt.start_epoch, opt.nEpochs + 1):
        train(training_data_loader, optimizer, model, criterion, epoch)
        save_checkpoint(model, epoch)