Exemple #1
0
def compare_urls():
    UPLOAD_FOLDER = './Unknown/'
    app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
    sourceDir   = "./Unknown/"   
    destDir = "./Unknown/"
    trainSourceDir="./uploads/"
    chunk_length_ms = 1000
    if request.method == 'POST':

        uploaded_files=[]
        urlnames = []

        urlnames.append(request.form['filelink1'])
        convertedFileName = convertURLToFile(urlnames[0])
        uploaded_files.append(convertedFileName)

        urlnames.append(request.form['filelink2'])
        convertedFileName = convertURLToFile(urlnames[1])
        uploaded_files.append(convertedFileName)

        for filename in uploaded_files:
            isMP3 = False
            if filename.endswith(".mp3"):
                isMP3 = True
                #file.save(os.path.join('Unknown',secure_filename(file.filename)))
                #filenames.append(replace_filename)
                #Convert mp3 to wav and save to audio_sources with appended guid 
                getWavfile(8000,1,filename,replace_filename,"./Unknown/","./Unknown/")     

        audio_split(uploaded_files[0], isMP3 , sourceDir, chunk_length_ms)
        training_result = model_train(uploaded_files[0],trainSourceDir,destDir)
        audio_split(uploaded_files[1], isMP3 , sourceDir, chunk_length_ms)
        training_result = model_train(uploaded_files[1],trainSourceDir,destDir)
        responseJson = {}
        appurl = request.url.split("/compare")

        if training_result == "Modelling completed":
            print("*********",uploaded_files[1])
            flag, _similarityProbScore, _compareMatch = compare_test(uploaded_files,sourceDir,destDir)
            responseJson = {}
            confidenceThreshold = 0.75

            if(_similarityProbScore == 1):
                responseJson = jsonify(
                                status = 200,
                                message = _compareMatch
                            )

            else:
                responseJson = jsonify(
                                status = 200,
                                message = _compareMatch,
                                similarityProbScore =format(_similarityProbScore, '.8f')

                            )
            
            return responseJson
    return '''
def upload_file():
    UPLOAD_FOLDER = './audio_sources/'
    #app = Flask(__name__)
    app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
    sourceDir = "./uploads/"
    destDir = "./Speakers_models/"
    wavSourceDir = "./audio_sources/"
    chunk_length_ms = 3000
    if request.method == 'POST':
        file = request.files['file']
        personname = request.form['personname']

        if file and allowed_file(file.filename):
            filename = secure_filename(file.filename)
            guid = str(uuid.uuid1()).replace("-", "")
            replace_filename = str(personname).replace(
                " ", "") + '-' + str(guid) + '.wav'
            isMP3 = False
            print("@@@@@@@@", replace_filename)

            if filename.endswith(".mp3"):
                isMP3 = True
                file.save(
                    os.path.join('audio_sources',
                                 secure_filename(file.filename)))
                #Convert mp3 to wav and save to audio_sources with appended guid
                getWavfile(8000, 1, filename, replace_filename,
                           "./audio_sources/", "./audio_sources/")

            else:
                file.save(
                    os.path.join('audio_sources',
                                 secure_filename(file.filename)))
                #Save the uploaded wav file to audio_sources with appended guid
                os.rename('./audio_sources/' + filename,
                          './audio_sources/' + replace_filename)

            #rename file name
            #os.rename('./audio_sources/' + filename, './audio_sources/' + replace_filename)
            audio_split(replace_filename, isMP3, wavSourceDir, chunk_length_ms)
            training_result = model_train(replace_filename, sourceDir, destDir)
            responseJson = {}
            appurl = request.url.split("/upload")

            if training_result == "Modelling completed":
                responseJson = jsonify(status=200,
                                       message="Enrollment Successful",
                                       guid=str(guid),
                                       name=personname,
                                       link=appurl[0] + "/audiofile/" +
                                       replace_filename)
            else:
                responseJson = jsonify(status=500,
                                       message="Enrollment Failed",
                                       guid=str(guid),
                                       name=personname)
            return responseJson

    return '''
Exemple #3
0
def compare_files():
    UPLOAD_FOLDER = './Unknown/'
    app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
    sourceDir   = "./Unknown/"   
    destDir = "./Unknown/"
    trainSourceDir="./uploads/"
    chunk_length_ms = 1000
    if request.method == 'POST':
        uploaded_files = request.files.getlist("file[]")
        filenames = []
        for file in uploaded_files:
            if file and allowed_file(file.filename):
                filename = secure_filename(file.filename)
                guid = str(uuid.uuid1()).replace("-", "")
                replace_filename = str(filename.split(".wav")[0]).replace(" ", "") + '-' + str(guid) + '.wav'
                isMP3 = False

                if filename.endswith(".mp3"):
                    isMP3 = True
                    file.save(os.path.join('Unknown',secure_filename(file.filename)))
                    filenames.append(replace_filename)
                    #Convert mp3 to wav and save to audio_sources with appended guid 
                    getWavfile(8000,1,filename,replace_filename,"./Unknown/","./Unknown/")

                else:
                    file.save(os.path.join('Unknown',secure_filename(file.filename)))
                    filenames.append(replace_filename)
                    #Save the uploaded wav file to audio_sources with appended guid
                    os.rename('./Unknown/' + filename, './Unknown/' + replace_filename)            

                #rename file name
                #os.rename('./audio_sources/' + filename, './audio_sources/' + replace_filename)            
        print("*******",filenames)

        audio_split(filenames[0], isMP3 , sourceDir, chunk_length_ms)
        training_result = model_train(filenames[0],trainSourceDir,destDir)
        audio_split(filenames[1], isMP3 , sourceDir, chunk_length_ms)
        training_result = model_train(filenames[1],trainSourceDir,destDir)
        responseJson = {}
        appurl = request.url.split("/compare")

        if training_result == "Modelling completed":
            print("*********",filenames[1])
            flag, _similarityProbScore, _compareMatch = compare_test(filenames,sourceDir,destDir)
            responseJson = {}
            confidenceThreshold = 0.75

            if(_similarityProbScore == 1):
                responseJson = jsonify(
                                status = 200,
                                message = _compareMatch
                            )

            else:
                responseJson = jsonify(
                                status = 200,
                                message = _compareMatch,
                                similarityProbScore =format(_similarityProbScore, '.8f')

                            )
            
            return responseJson
    return '''