Exemple #1
0
def buildTrainData(baseDir):
    model = load_fan()
    dirs = [baseDir + '/' + d for d in os.listdir(baseDir)]
    train_str = ''
    for d in dirs:
        mainPic = d + '/main.jpg'
        pics = getPicList(d)
        for p in pics:
            img = cv2.imread(p, cv2.IMREAD_COLOR)
            points = get_68_points(img, model)
            if points is None:
                continue
            px = points[:, 0]
            py = points[:, 1]
            x_str = ''
            y_str = ''
            for i in range(points.shape[0]):
                x_str += str(int(px[i])) + ' '
                y_str += str(int(py[i])) + ' '
            x_str = x_str.strip()
            y_str = y_str.strip()
            p_str = p + ' ' + mainPic + ' ' + x_str + ' ' + y_str
            train_str += p_str + '\n'
            print(p)
    open('train_data.txt', 'w', 'utf-8').write(train_str.strip())
def generateAB68(pathA, pathB):
    Afiles = getFileList(pathA)
    Bfiles = getFileList(pathB)
    A_str = ''
    B_str = ''
    model = load_fan()
    for a in Afiles:
        m_str = innerGen68(a, model)
        if m_str is not None:
            A_str += a + ' ' + m_str + '\n'
            print(a, m_str)
    for b in Bfiles:
        m_str = innerGen68(b, model)
        if m_str is not None:
            B_str += b + ' ' + m_str + '\n'
            print(b, m_str)
    open('A_68.txt', 'w', 'utf-8').write(A_str.strip())
    open('B_68.txt', 'w', 'utf-8').write(B_str.strip())
Exemple #3
0
def buildSingleData(baseDir):
    model = load_fan()
    train_str = ''
    paths = [baseDir + '/' + p for p in os.listdir(baseDir)]
    for p in paths:
        img = cv2.imread(p, cv2.IMREAD_COLOR)
        points = get_68_points(img, model)
        if points is None:
            continue
        px = points[:, 0]
        py = points[:, 1]
        x_str = ''
        y_str = ''
        for i in range(points.shape[0]):
            x_str += str(int(px[i])) + ' '
            y_str += str(int(py[i])) + ' '
        x_str = x_str.strip()
        y_str = y_str.strip()
        p_str = p + ' ' + x_str + ' ' + y_str
        train_str += p_str + '\n'
        print(p)
    open('train_data.txt', 'w', 'utf-8').write(train_str.strip())
Exemple #4
0
def processSingleMain(path):
    model = load_fan()
    mp = path + '/main.jpg'
    img = getMainFace(mp, model)
    cv2.imwrite(mp, img)
    print('write', mp)
Exemple #5
0
import os, sys
sys.path.append('./face-alignment')
from MyFanPred import get_68_points as get_68_fan_points
from MyFanPred import load_fan
from mtcnn import DetectFace
from skimage import transform as trans
from color_adjust import Color, MatchHist
from fan_util import drawLandmarks
from SAE_clip_resnext_dln import AutoEncoder
sys.path.append('./resoaugment')
from next_resoaug import SAE_RESNEXT_ENCODER as RESOAUGMODEL
sys.path.append('./CosFace_pytorch')
from cosface_pred import get_img_feature, get_distance

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
fan = load_fan()
color_adj = Color()
detectFace = DetectFace()
AEModel = AutoEncoder()
AEModel.load_state_dict(
    torch.load('models/angelababy_libingbing.pth', map_location=device))
AEModel.eval()
resoModel = RESOAUGMODEL()
resoModel.load_state_dict(
    torch.load('resoaugment/best_generator.pth', map_location=device))
resoModel.eval()

landmarks_2D = np.array(
    [
        [0.000213256, 0.106454],  #17
        [0.0752622, 0.038915],  #18