Exemple #1
0
    def f14(domain=(-65.54, 65.54), dimensions=2):
        """
        M. Shekel's Foxholes Function
        Dimensions: 2
        Domain: -65.54 -> 65.54
        Minimum value: f(31.95) = 0.998 (~1)

        :param domain:
        :param dimensions:
        :return:
        """
        def function(x):
            sum = 0
            for j in range(24):
                secondsum = 0
                for i in range(2):
                    secondsum += (x[i] -
                                  ComparativeBenchmarks.a_matrix[i][j])**6
                sum += (j + 1 + secondsum)**-1
            total = ((1 / 500) + sum)**-1
            return total

        return Benchmark(function=function,
                         domain=domain,
                         dimensions=dimensions,
                         min_value=0.998,
                         name="14")
Exemple #2
0
    def f12(domain=(-50, 50), dimensions=30):
        """
        Generalised Penalised Function
        Domain: -50 -> 50
        Minimum value: f(-1) = 0

        :param domain:
        :param dimensions:
        :return:
        """
        def function(x):
            n = len(x)
            sum = 0
            secondsum = 0
            for i in range(n):
                if i < n - 1:
                    sum += (
                        (((ComparativeBenchmarks.y(x[i]) - 1)**2) *
                         (1 + 10 *
                          (math.sin(math.pi *
                                    ComparativeBenchmarks.y(x[i + 1])))**2)) +
                        (ComparativeBenchmarks.y(x[n - 1]) - 1)**2)
                secondsum += ComparativeBenchmarks.u(x[i], 10, 100, 4)
            total = (math.pi / n) * (
                (10 * math.sin(math.pi * ComparativeBenchmarks.y(x[1])))**2 +
                sum) + secondsum
            return total

        return Benchmark(function=function,
                         domain=domain,
                         dimensions=dimensions,
                         min_value=0,
                         name="12")
Exemple #3
0
    def f13(domain=(-50, 50), dimensions=30):
        """
        TODO CHECK AGAIN
        Generalised Penalised Function
        Domain: -50 -> 50
        Minimum value: f(1,...,1) = 0

        :param domain:
        :param dimensions:
        :return:
        """
        def function(x):
            n = len(x)
            sum = 0
            secondsum = 0
            for i in range(n - 2):
                sum += (x[i] - 1)**2 * (1 + np.sin(
                    3 * np.pi * x[i + 1])**2) + (x[n - 1] - 1)**2 * (
                        1 + np.sin(2 * np.pi * x[n - 1])**2)
            for i in range(n - 1):
                secondsum += ComparativeBenchmarks.u(x[i], 5, 100, 4)
            total = 0.1 * (np.sin(np.pi * 3 * x[0])**2 + sum) + secondsum
            return total

        return Benchmark(function=function,
                         domain=domain,
                         dimensions=dimensions,
                         min_value=0,
                         name="13")
Exemple #4
0
    def f10(domain=(-32, 32), dimensions=30):
        """
        Ackley's Function
        Domain: -32 -> 32
        Minimum value: f(0) = 0

        :param domain:
        :param dimensions:
        :return:
        """
        def function(x):
            sum = 0
            n = len(x)
            a = 0
            b = 0
            for i in range(n):
                a += x[i]**2
                b += np.cos(2 * np.pi * x[i])
            sum = -20 * np.exp(-0.2 * ((1 / n) * a**0.5)) - np.exp(
                (1 / n) * b) + 20 + np.e
            return sum

        return Benchmark(function=function,
                         domain=domain,
                         dimensions=dimensions,
                         min_value=0,
                         name="10")
Exemple #5
0
    def f20(domain=(0, 1), dimensions=6):
        """
        R. Hartman's Family
        Dimensions: 6
        Domain: 0 -> 1
        Minimum value: f(0.201,0.150,0.477,0.275,0.311,0.657) = -3.32

        :param domain:
        :param dimensions:
        :return:
        """
        def function(x):
            sum = 0
            for i in range(4):
                secondsum = 0
                for j in range(6):
                    secondsum += ComparativeBenchmarks.a_hartman20[i][j] * \
                                 ((x[j]-ComparativeBenchmarks.p_hartman20[i][j])**2)
                sum += ComparativeBenchmarks.c_hartman[i] * math.exp(
                    -secondsum)
            return -sum

        return Benchmark(function=function,
                         domain=domain,
                         dimensions=dimensions,
                         min_value=-3.32,
                         name="20")
Exemple #6
0
    def f19(domain=(0, 1), dimensions=3):
        """
        R. Hartman's Family
        Dimensions: 3
        Domain: 0 -> 1
        Minimum value: f(0.114,0.556,0.852) = -3.86

        :param domain:
        :param dimensions:
        :return:
        """
        def function(x):
            sum = 0
            for i in range(4):
                secondsum = 0
                for j in range(3):
                    secondsum += ComparativeBenchmarks.a_hartman19[i][j] * \
                                 ((x[j]-ComparativeBenchmarks.p_hartman19[i][j])**2)
                sum += ComparativeBenchmarks.c_hartman[i] * math.exp(
                    -secondsum)
            return -sum

        return Benchmark(function=function,
                         domain=domain,
                         dimensions=dimensions,
                         min_value=-3.86,
                         name="19")
Exemple #7
0
    def f15(domain=(-5, 5), dimensions=4):
        """
        N. Kowalik's Function
        Dimensions: 4
        Domain: -5 -> 5
        Minimum value: f(0.19,0.19,0.12,0.14) = 0.0003075

        :param domain:
        :param dimensions:
        :return:
        """
        def function(x):
            sum = 0
            for i in range(10):
                sum += (ComparativeBenchmarks.a_vector[i] -
                        ((x[0] * ((ComparativeBenchmarks.b_vector[i]**2) +
                                  ComparativeBenchmarks.b_vector[i] * x[1])) /
                         ((ComparativeBenchmarks.b_vector[i]**2) +
                          ComparativeBenchmarks.b_vector[i] * x[2] + x[3])))**2
            return sum

        return Benchmark(function=function,
                         domain=domain,
                         dimensions=dimensions,
                         min_value=-1.1428,
                         name="15")
Exemple #8
0
    def f23(domain=(0, 10), dimensions=4):
        """
        S. Shekel's Family
        Dimensions: 4
        Domain: 0 -> 10
        Minimum value: f(~4) = -10.5

        :param domain:
        :param dimensions:
        :return:
        """
        def function(x):
            sum = 0
            for i in range(9):
                vector_1 = ComparativeBenchmarks.subtract_vectors(
                    x, ComparativeBenchmarks.a_shekel[i])
                vector_2 = ComparativeBenchmarks.subtract_vectors(
                    x, ComparativeBenchmarks.a_shekel[i])
                sum += (ComparativeBenchmarks.dot_product(vector_1, vector_2) +
                        ComparativeBenchmarks.c_shekel[i])**-1
            return -sum

        return Benchmark(function=function,
                         domain=domain,
                         dimensions=dimensions,
                         min_value=-10.5,
                         name="23")
Exemple #9
0
    def f16(domain=(-5, 5), dimensions=2):
        """
        O. Six-Hump Camel-Back Function
        Dimensions: 2
        Domain: -5 -> 5
        Minimum value: f(-0.09,0.71) = -1.0316

        :param domain:
        :param dimensions:
        :return:
        """
        def function(x):
            return 4 * x[0]**2 - 2.1 * x[0]**4 + (
                1 / 3) * x[0]**6 + x[0] * x[1] - 4 * x[1]**2 + 4 * x[1]**4

        return Benchmark(function=function,
                         domain=domain,
                         dimensions=dimensions,
                         min_value=-1.0316,
                         name="16")
Exemple #10
0
    def f17(domain=(-5, 15), dimensions=2):
        """
        P. Branin Function
        Dimensions: 2
        Domain: -5 -> 15
        Minimum value: f(9.42,2.47) = 0.398

        :param domain:
        :param dimensions:
        :return:
        """
        def function(x):
            return ((x[1] - (5.1 / (4*(math.pi**2))) * (x[0]**2) + (5/math.pi)*x[0] - 6)**2) + 10*(1 - (1/(8*math.pi))) * \
                   math.cos(x[0])+10

        return Benchmark(function=function,
                         domain=domain,
                         dimensions=dimensions,
                         min_value=0.398,
                         name="17")
Exemple #11
0
    def f9(domain=(-5.12, 5.12), dimensions=30):
        """
        Generalised Rastrigin's Function
        Domain: -5.12 -> 5.12
        Minimum value: f(0) = 0

        :param domain:
        :param dimensions:
        :return:
        """
        def function(x):
            sum = 0
            for i in range(len(x)):
                sum += (x[i]**2) - 10 * math.cos(2 * math.pi * x[i]) + 10
            return sum

        return Benchmark(function=function,
                         domain=domain,
                         dimensions=dimensions,
                         min_value=0,
                         name="9")
Exemple #12
0
    def f6(domain=(-100, 100), dimensions=30):
        """
        Step Function
        Domain: -100 -> 100
        Minimum value: f(p) = 0, -0.5 <= p <= 0.5

        :param domain:
        :param dimensions:
        :return:
        """
        def function(x):
            sum = 0
            for i in range(len(x)):
                sum += (abs(x[i] + 0.5))**2
            return sum

        return Benchmark(function=function,
                         domain=domain,
                         dimensions=dimensions,
                         min_value=0,
                         name="6")
Exemple #13
0
    def f5(domain=(-30, 30), dimensions=30):
        """
        Generalised Rosenbrock's Function
        Domain: -30 -> 30
        Minimum value: f(1) = 0

        :param domain:
        :param dimensions:
        :return:
        """
        def function(x):
            sum = 0
            for i in range(len(x) - 1):
                sum += 100 * (x[i + 1] - (x[i]**2))**2 + (x[i] - 1)**2
            return sum

        return Benchmark(function=function,
                         domain=domain,
                         dimensions=dimensions,
                         min_value=0,
                         name="5")
Exemple #14
0
    def f4(domain=(-100, 100), dimensions=30):
        """
        Domain: -100 -> 100
        Minimum value: f(0) = 0

        :param domain:
        :param dimensions:
        :return:
        """
        def function(x):
            max = None
            for i in range(len(x)):
                if max is None or abs(x[i]) > max:
                    max = abs(x[i])
            return max

        return Benchmark(function=function,
                         domain=domain,
                         dimensions=dimensions,
                         min_value=0,
                         name="4")
Exemple #15
0
    def f1(domain=(-5.12, 5.12), dimensions=30):
        """
        Sphere Model
        Domain: -5.12 -> 5.12
        Minimum Value: f(0) = 0

        :param domain:
        :param dimensions:
        :return:
        """
        def function(x):
            sum = 0
            for i in range(len(x)):
                sum += x[i]**2
            return sum

        return Benchmark(function=function,
                         domain=domain,
                         dimensions=dimensions,
                         min_value=0,
                         name="1")
Exemple #16
0
    def f7(domain=(-1.28, 1.28), dimensions=30):
        """
        Quartic Function i.e. Noise
        Domain: -1.28 -> 1.28
        Minimum value: f(0) = 0

        :param domain:
        :param dimensions:
        :return:
        """
        def function(x):
            sum = 0
            for i in range(len(x)):
                sum += (i + 1) * x[i]**4
            sum += random.uniform(0, 1)
            return sum

        return Benchmark(function=function,
                         domain=domain,
                         dimensions=dimensions,
                         min_value=0,
                         name="7")
Exemple #17
0
    def f8(domain=(-500, 500), dimensions=30):
        """
        Generalised Schwefel's Problem 2.26
        Domain: -500 -> 500
        Minimum value: f(420.97) = -12569.5(30)/41898.3(100)

        :param domain:
        :param dimensions:
        :return:
        """
        def function(x):
            sum = 0
            n = len(x)
            for i in range(n):
                sum += -x[i] * math.sin(math.sqrt(abs(x[i])))
            return sum

        min_value = -418.9829 * dimensions
        return Benchmark(function=function,
                         domain=domain,
                         dimensions=dimensions,
                         min_value=min_value,
                         name="8")
Exemple #18
0
    def f11(domain=(-600, 600), dimensions=30):
        """
        Generalised Griewank Function
        Domain: -600 -> 600
        Minimum value: f(0) = 0

        :param domain:
        :param dimensions:
        :return:
        """
        def function(x):
            sum = 0
            prod = 0
            for i in range(len(x)):
                sum += x[i]**2
                prod *= math.cos(x[i] / (math.sqrt(i + 1)))
            total = (1 / 4000) * sum + prod
            return total

        return Benchmark(function=function,
                         domain=domain,
                         dimensions=dimensions,
                         min_value=0,
                         name="11")
Exemple #19
0
    def f3(domain=(-100, 100), dimensions=30):
        """
        Schwefel's Problem 1.2
        Domain: -100 -> 100
        Minimum value: f(0) = 0

        :param domain:
        :param dimensions:
        :return:
        """
        def function(x):
            sum = 0
            for i in range(len(x)):
                secondsum = 0
                for j in range(i):
                    secondsum += x[j]
                sum += secondsum**2
            return sum

        return Benchmark(function=function,
                         domain=domain,
                         dimensions=dimensions,
                         min_value=0,
                         name="3")
Exemple #20
0
    def f18(domain=(-2, 2), dimensions=2):
        """
        Q. Goldstein-Price Function
        Dimensions: 2
        Domain: -2 -> 2
        Minimum value: f(0,-1) = 3

        :param domain:
        :param dimensions:
        :return:
        """
        def function(x):
            return ((1 + ((x[0] + x[1] + 1)**2) *
                     (19 - (14 * x[0]) + ((3 * x[0])**2) - (14 * x[1]) +
                      (6 * x[0] * x[1]) + ((3 * x[1])**2))) *
                    (30 + (((2 * x[0]) - (3 * x[1]))**2) *
                     (18 - (32 * x[0]) + (12 * (x[0]**2)) + (48 * x[1]) -
                      (36 * x[0] * x[1]) + (27 * (x[1]**2)))))

        return Benchmark(function=function,
                         domain=domain,
                         dimensions=dimensions,
                         min_value=3,
                         name="18")
Exemple #21
0
    def f2(domain=(-10, 10), dimensions=30):
        """
        Schwefel's Problem 2.22
        Domain: -10 -> 10
        Minimum value: f(0) = 0

        :param domain:
        :param dimensions:
        :return:
        """
        def function(x):
            sum = 0
            prod = 0
            for i in range(len(x)):
                sum += abs(x[i])
                prod *= abs(x[i])
            total = sum + prod
            return total

        return Benchmark(function=function,
                         domain=domain,
                         dimensions=dimensions,
                         min_value=0,
                         name="2")