Exemple #1
0
import tifffile as tf
import matplotlib.pyplot as plt
import NeuroAnalysisTools.core.ImageAnalysis as ia

data_fn = 'zstack_2p_zoom2_red_aligned.tif'
save_fn = '2018-08-16-M376019-depth-profile-red.png'
start_depth = 50 # micron
step_depth = 2 # micron
pix_size = 0.7 # sutter scope, zoom2, 512 x 512
resolution =  512

curr_folder = os.path.dirname(os.path.abspath(__file__))
os.chdir(curr_folder)

data = tf.imread(data_fn)
dp = ia.array_nor(np.mean(data, axis=1))

depth_i = np.array(range(0, dp.shape[0], 50))
depth_l = depth_i * step_depth + start_depth

f = plt.figure(figsize=(8, 8))
ax = f.add_subplot(111)
ax.imshow(dp, vmin=0, vmax=1, cmap='magma', aspect=step_depth / pix_size)
ax.set_xticks([0, resolution-1])
ax.set_xticklabels(['0', '{:7.2f}'.format(resolution*pix_size)])
ax.set_yticks(depth_i)
ax.set_yticklabels(depth_l)
ax.set_xlabel('horizontal dis (um)')
ax.set_ylabel('depth (um)')

plt.show()
filter_sigma = 0.  # parameters only used if filter the rois
# dilation_iterations = 1. # parameters only used if filter the rois
cut_thr = 2.5  # low for more rois, high for less rois

bg_fn = "corrected_mean_projections.tif"
save_folder = 'figures'

curr_folder = os.path.dirname(os.path.realpath(__file__))
os.chdir(curr_folder)

data_f = h5py.File('caiman_segmentation_results.hdf5')
masks = data_f['masks'].value
data_f.close()

bg = ia.array_nor(np.max(tf.imread(bg_fn), axis=0))

final_roi_dict = {}

for i, mask in enumerate(masks):

    if is_filter:
        mask_nor = (mask - np.mean(mask.flatten())) / np.abs(
            np.std(mask.flatten()))
        mask_nor_f = ni.filters.gaussian_filter(mask_nor, filter_sigma)
        mask_bin = np.zeros(mask_nor_f.shape, dtype=np.uint8)
        mask_bin[mask_nor_f > cut_thr] = 1

    else:
        mask_bin = np.zeros(mask.shape, dtype=np.uint8)
        mask_bin[mask > 0] = 1
Exemple #3
0
def run():
    # pixels, masks with center location within this pixel region at the image border will be discarded
    center_margin = [
        10, 30, 35, 10
    ]  # [top margin, bottom margin, left margin, right margin]

    # area range, range of number of pixels of a valid roi
    area_range = [5, 500]  # [10, 100] for bouton, [150, 1000] for soma

    # for the two masks that are overlapping, if the ratio between overlap and the area of the smaller mask is larger than
    # this value, the smaller mask will be discarded.
    overlap_thr = 0  # 0.2

    save_folder = 'figures'

    data_file_name = 'cells.hdf5'
    save_file_name = 'cells_refined.hdf5'
    background_file_name = "corrected_mean_projections.tif"

    curr_folder = os.path.dirname(os.path.realpath(__file__))
    os.chdir(curr_folder)

    if not os.path.isdir(save_folder):
        os.makedirs(save_folder)

    # read cells
    dfile = h5py.File(data_file_name, 'r')
    cells = {}
    for cellname in dfile.keys():
        cells.update({cellname: ia.WeightedROI.from_h5_group(dfile[cellname])})

    print('total number of cells:', len(cells))

    # get the names of cells which are on the edge
    edge_cells = []
    for cellname, cellmask in cells.items():
        dimension = cellmask.dimension
        center = cellmask.get_center()
        if center[0] < center_margin[0] or \
           center[0] > dimension[0] - center_margin[1] or \
           center[1] < center_margin[2] or \
           center[1] > dimension[1] - center_margin[3]:

            # cellmask.plot_binary_mask_border(color='#ff0000', borderWidth=1)
            # plt.title(cellname)
            # plt.show()

            edge_cells.append(cellname)

    print('\ncells to be removed because they are on the edges:')
    print('\n'.join(edge_cells))

    # remove edge cells
    for edge_cell in edge_cells:
        _ = cells.pop(edge_cell)

    # get dictionary of cell areas
    cell_areas = {}
    for cellname, cellmask in cells.items():
        cell_areas.update({cellname: cellmask.get_binary_area()})

    # remove cellnames that have area outside of the area_range
    invalid_cell_ns = []
    for cellname, cellarea in cell_areas.items():
        if cellarea < area_range[0] or cellarea > area_range[1]:
            invalid_cell_ns.append(cellname)
    print("cells to be removed because they do not meet area criterion:")
    print("\n".join(invalid_cell_ns))
    for invalid_cell_n in invalid_cell_ns:
        cell_areas.pop(invalid_cell_n)

    # sort cells with their binary area
    cell_areas_sorted = sorted(cell_areas.items(), key=operator.itemgetter(1))
    cell_areas_sorted.reverse()
    cell_names_sorted = [c[0] for c in cell_areas_sorted]
    # print '\n'.join([str(c) for c in cell_areas_sorted])

    # get the name of cells that needs to be removed because of overlapping
    retain_cells = []
    remove_cells = []
    for cell1_name in cell_names_sorted:
        cell1_mask = cells[cell1_name]
        is_remove = 0
        cell1_area = cell1_mask.get_binary_area()
        for cell2_name in retain_cells:
            cell2_mask = cells[cell2_name]
            cell2_area = cell2_mask.get_binary_area()
            curr_overlap = cell1_mask.binary_overlap(cell2_mask)

            if float(curr_overlap) / cell1_area > overlap_thr:
                remove_cells.append(cell1_name)
                is_remove = 1
                print(cell1_name, ':', cell1_mask.get_binary_area(),
                      ': removed')

                # f = plt.figure(figsize=(10,10))
                # ax = f.add_subplot(111)
                # cell1_mask.plot_binary_mask_border(plotAxis=ax, color='#ff0000', borderWidth=1)
                # cell2_mask.plot_binary_mask_border(plotAxis=ax, color='#0000ff', borderWidth=1)
                # ax.set_title('red:'+cell1_name+'; blue:'+cell2_name)
                # plt.show()
                break

        if is_remove == 0:
            retain_cells.append(cell1_name)
            print(cell1_name, ':', cell1_mask.get_binary_area(), ': retained')

    print('\ncells to be removed because of overlapping:')
    print('\n'.join(remove_cells))
    print('\ntotal number of reatined cells:', len(retain_cells))

    # plotting
    colors = pt.random_color(len(cells.keys()))
    bgImg = ia.array_nor(np.max(tf.imread(background_file_name), axis=0))

    f = plt.figure(figsize=(10, 10))
    ax = f.add_subplot(111)
    ax.imshow(ia.array_nor(bgImg),
              cmap='gray',
              vmin=0,
              vmax=0.5,
              interpolation='nearest')

    f2 = plt.figure(figsize=(10, 10))
    ax2 = f2.add_subplot(111)
    ax2.imshow(np.zeros(bgImg.shape, dtype=np.uint8),
               vmin=0,
               vmax=1,
               cmap='gray',
               interpolation='nearest')

    i = 0
    for retain_cell in retain_cells:
        cells[retain_cell].plot_binary_mask_border(plotAxis=ax,
                                                   color=colors[i],
                                                   borderWidth=1)
        cells[retain_cell].plot_binary_mask_border(plotAxis=ax2,
                                                   color=colors[i],
                                                   borderWidth=1)
        i += 1
    # plt.show()

    # save figures
    pt.save_figure_without_borders(f,
                                   os.path.join(
                                       save_folder,
                                       '2P_refined_ROIs_with_background.png'),
                                   dpi=300)
    pt.save_figure_without_borders(
        f2,
        os.path.join(save_folder, '2P_refined_ROIs_without_background.png'),
        dpi=300)

    # save h5 file
    save_file = h5py.File(save_file_name, 'x')
    i = 0
    for retain_cell in retain_cells:
        print(retain_cell, ':', cells[retain_cell].get_binary_area())

        currGroup = save_file.create_group('cell' + ft.int2str(i, 4))
        currGroup.attrs['name'] = retain_cell
        roiGroup = currGroup.create_group('roi')
        cells[retain_cell].to_h5_group(roiGroup)
        i += 1

    for attr, value in dfile.attrs.items():
        save_file.attrs[attr] = value

    save_file.close()
    dfile.close()
            # cell2_mask.plot_binary_mask_border(plotAxis=ax, color='#0000ff', borderWidth=1)
            # ax.set_title('red:'+cell1_name+'; blue:'+cell2_name)
            # plt.show()
            break

    if is_remove == 0:
        retain_cells.append(cell1_name)
        print(cell1_name, ':', cell1_mask.get_binary_area(), ': retained')

print('\ncells to be removed because of overlapping:')
print('\n'.join(remove_cells))
print('\ntotal number of reatined cells:', len(retain_cells))

# plotting
colors = pt.random_color(len(cells.keys()))
bgImg = ia.array_nor(np.max(tf.imread(background_file_name), axis=0))

f = plt.figure(figsize=(10, 10))
ax = f.add_subplot(111)
ax.imshow(ia.array_nor(bgImg),
          cmap='gray',
          vmin=0,
          vmax=0.5,
          interpolation='nearest')

f2 = plt.figure(figsize=(10, 10))
ax2 = f2.add_subplot(111)
ax2.imshow(np.zeros(bgImg.shape, dtype=np.uint8),
           vmin=0,
           vmax=1,
           cmap='gray',
    if 'path_list' in offsets_keys:
        offsets_keys.remove('path_list')

    offsets_keys.sort()
    offsets = []
    for offsets_key in offsets_keys:
        offsets.append(offsets_f[offsets_key].value)
    offsets = np.concatenate(offsets, axis=0)
    offsets = np.array(zip(offsets[:, 1], offsets[:, 0]))
    offsets_f.close()

    mean_projection = tf.imread(
        os.path.join(plane_n, 'corrected_mean_projection.tif'))
    max_projection = tf.imread(
        os.path.join(plane_n, 'corrected_max_projections.tif'))
    max_projection = ia.array_nor(np.max(max_projection, axis=0))

    input_dict = {
        'field_name':
        plane_n,
        'original_timeseries_path':
        '/acquisition/timeseries/2p_movie_plane' + str(i),
        'corrected_file_path':
        movie_2p_fn,
        'corrected_dataset_path':
        plane_n,
        'xy_translation_offsets':
        offsets,
        'mean_projection':
        mean_projection,
        'max_projection':
Exemple #6
0
def run():
    isSave = True

    filter_sigma = 2.  # 2. for soma, 1. for bouton
    thr_high = 0.0
    thr_low = 0.1

    bg_fn = "corrected_mean_projections.tif"
    save_folder = 'figures'

    curr_folder = os.path.dirname(os.path.realpath(__file__))
    os.chdir(curr_folder)

    data_f = h5py.File('caiman_segmentation_results.hdf5', 'r')
    masks = data_f['masks'].value
    data_f.close()

    bg = ia.array_nor(np.max(tf.imread(bg_fn), axis=0))

    final_roi_dict = {}

    roi_ind = 0
    for i, mask in enumerate(masks):
        mask_dict = hl.threshold_mask_by_energy(mask,
                                                sigma=filter_sigma,
                                                thr_high=thr_high,
                                                thr_low=thr_low)
        for mask_roi in mask_dict.values():
            final_roi_dict.update({'roi_{:04d}'.format(roi_ind): mask_roi})
            roi_ind += 1

    print('Total number of ROIs:', len(final_roi_dict))

    f = plt.figure(figsize=(15, 8))
    ax1 = f.add_subplot(121)
    ax1.imshow(bg, vmin=0, vmax=0.5, cmap='gray', interpolation='nearest')
    colors1 = pt.random_color(masks.shape[0])
    for i, mask in enumerate(masks):
        pt.plot_mask_borders(mask, plotAxis=ax1, color=colors1[i])
    ax1.set_title('original ROIs')
    ax1.set_axis_off()
    ax2 = f.add_subplot(122)
    ax2.imshow(ia.array_nor(bg),
               vmin=0,
               vmax=0.5,
               cmap='gray',
               interpolation='nearest')
    colors2 = pt.random_color(len(final_roi_dict))
    i = 0
    for roi in final_roi_dict.values():
        pt.plot_mask_borders(roi.get_binary_mask(),
                             plotAxis=ax2,
                             color=colors2[i])
        i = i + 1
    ax2.set_title('filtered ROIs')
    ax2.set_axis_off()
    # plt.show()

    if isSave:

        if not os.path.isdir(save_folder):
            os.makedirs(save_folder)

        f.savefig(os.path.join(save_folder,
                               'caiman_segmentation_filtering.pdf'),
                  dpi=300)

        cell_file = h5py.File('cells.hdf5', 'w')

        i = 0
        for key, value in sorted(final_roi_dict.items()):
            curr_grp = cell_file.create_group('cell{:04d}'.format(i))
            curr_grp.attrs['name'] = key
            value.to_h5_group(curr_grp)
            i += 1

        cell_file.close()
Exemple #7
0
                'vasmap_wf_rotated': 'wide field surface vasculature map through cranial window rotated',
                'vasmap_2p_green': '2p surface vasculature map through cranial window green original, zoom1',
                'vasmap_2p_green_rotated': '2p surface vasculature map through cranial window green rotated, zoom1',
                'vasmap_2p_red': '2p surface vasculature map through cranial window red original, zoom1',
                'vasmap_2p_red_rotated': '2p surface vasculature map through cranial window red rotated, zoom1'
                }

curr_folder = os.path.dirname(os.path.realpath(__file__))
os.chdir(curr_folder)

nwb_fn = [f for f in os.listdir(curr_folder) if f[-4:] == '.nwb'][0]
nwb_f = nt.RecordedFile(nwb_fn)

for mn, des in vasmap_dict.items():
    try:
        curr_m = ia.array_nor(tf.imread(mn + '.tif'))

        if is_plot:
            f = plt.figure(figsize=(10, 10))
            ax = f.add_subplot(111)
            ax.imshow(curr_m, vmin=0., vmax=1., cmap='gray', interpolation='nearest')
            ax.set_axis_off()
            ax.set_title(mn)
            plt.show()

        print('adding {} to nwb file.'.format(mn))
        nwb_f.add_acquisition_image(mn, curr_m, description=des)

    except Exception as e:
        print(e)
def run():
    data_file_name = 'cells_refined.hdf5'
    background_file_name = "corrected_mean_projections.tif"
    save_folder = 'figures'

    overlap_threshold = 0.9
    surround_limit = [1, 8]

    curr_folder = os.path.dirname(os.path.realpath(__file__))
    os.chdir(curr_folder)

    if not os.path.isdir(save_folder):
        os.makedirs(save_folder)

    print('reading cells file ...')
    data_f = h5py.File(data_file_name, 'r')

    cell_ns = data_f.keys()
    cell_ns.sort()

    binary_mask_array = []
    weight_mask_array = []

    for cell_n in cell_ns:
        curr_roi = ia.ROI.from_h5_group(data_f[cell_n]['roi'])
        binary_mask_array.append(curr_roi.get_binary_mask())
        weight_mask_array.append(curr_roi.get_weighted_mask())

    data_f.close()
    binary_mask_array = np.array(binary_mask_array)
    weight_mask_array = np.array(weight_mask_array)
    print('starting mask_array shape:', weight_mask_array.shape)

    print('getting total mask ...')
    total_mask = np.zeros((binary_mask_array.shape[1], binary_mask_array.shape[2]), dtype=np.uint8)
    for curr_mask in binary_mask_array:
        total_mask = np.logical_or(total_mask, curr_mask)
    total_mask = np.logical_not(total_mask)

    plt.imshow(total_mask, interpolation='nearest')
    plt.title('total_mask')
    # plt.show()

    print('getting and surround masks ...')
    binary_surround_array = []
    for binary_center in binary_mask_array:
        curr_surround = np.logical_xor(ni.binary_dilation(binary_center, iterations=surround_limit[1]),
                                       ni.binary_dilation(binary_center, iterations=surround_limit[0]))
        curr_surround = np.logical_and(curr_surround, total_mask).astype(np.uint8)
        binary_surround_array.append(curr_surround)
        # plt.imshow(curr_surround)
        # plt.show()
    binary_surround_array = np.array(binary_surround_array)

    print("saving rois ...")
    center_areas = []
    surround_areas = []
    for mask_ind in range(binary_mask_array.shape[0]):
        center_areas.append(np.sum(binary_mask_array[mask_ind].flat))
        surround_areas.append(np.sum(binary_surround_array[mask_ind].flat))
    roi_f = h5py.File('rois_and_traces.hdf5')
    roi_f['masks_center'] = weight_mask_array
    roi_f['masks_surround'] = binary_surround_array

    roi_f.close()
    print('minimum surround area:', min(surround_areas), 'pixels.')

    f = plt.figure(figsize=(10, 10))
    ax_center = f.add_subplot(211)
    ax_center.hist(center_areas, bins=30)
    ax_center.set_title('roi center area distribution')
    ax_surround = f.add_subplot(212)
    ax_surround.hist(surround_areas, bins=30)
    ax_surround.set_title('roi surround area distribution')
    # plt.show()

    print('plotting ...')
    colors = pt.random_color(weight_mask_array.shape[0])
    bg = ia.array_nor(np.max(tf.imread(background_file_name), axis=0))

    f_c_bg = plt.figure(figsize=(10, 10))
    ax_c_bg = f_c_bg.add_subplot(111)
    ax_c_bg.imshow(bg, cmap='gray', vmin=0, vmax=0.5, interpolation='nearest')
    f_c_nbg = plt.figure(figsize=(10, 10))
    ax_c_nbg = f_c_nbg.add_subplot(111)
    ax_c_nbg.imshow(np.zeros(bg.shape,dtype=np.uint8),vmin=0,vmax=1,cmap='gray',interpolation='nearest')
    f_s_nbg = plt.figure(figsize=(10, 10))
    ax_s_nbg = f_s_nbg.add_subplot(111)
    ax_s_nbg.imshow(np.zeros(bg.shape,dtype=np.uint8),vmin=0,vmax=1,cmap='gray',interpolation='nearest')

    i = 0
    for mask_ind in range(binary_mask_array.shape[0]):
        pt.plot_mask_borders(binary_mask_array[mask_ind], plotAxis=ax_c_bg, color=colors[i], borderWidth=1)
        pt.plot_mask_borders(binary_mask_array[mask_ind], plotAxis=ax_c_nbg, color=colors[i], borderWidth=1)
        pt.plot_mask_borders(binary_surround_array[mask_ind], plotAxis=ax_s_nbg, color=colors[i], borderWidth=1)
        i += 1

    # plt.show()

    print('saving figures ...')
    pt.save_figure_without_borders(f_c_bg, os.path.join(save_folder, '2P_ROIs_with_background.png'), dpi=300)
    pt.save_figure_without_borders(f_c_nbg, os.path.join(save_folder, '2P_ROIs_without_background.png'), dpi=300)
    pt.save_figure_without_borders(f_s_nbg, os.path.join(save_folder, '2P_ROI_surrounds_background.png'), dpi=300)
    f.savefig(os.path.join(save_folder, 'roi_area_distribution.pdf'), dpi=300)
import tifffile as tf
import matplotlib.pyplot as plt
import NeuroAnalysisTools.core.ImageAnalysis as ia

data_folder = r"\\allen\programs\braintv\workgroups\nc-ophys\Jun\raw_data\190822-M471944-deepscope\movie"
identifier = '110_LSNDGCUC'
start_ind = 121228
frame_num = 3

fns = []

for ind in np.arange(frame_num, dtype=np.int) + start_ind:

    if ind < 100000:
        fns.append('{}_{:05d}_00001.tif'.format(identifier, ind))
    elif ind < 1000000:
        fns.append('{}_{:06d}_00001.tif'.format(identifier, ind))
    elif ind < 10000000:
        fns.append('{}_{:07d}_00001.tif'.format(identifier, ind))

f = plt.figure(figsize=(5, 12))
for frame_i in range(frame_num):
    ax = f.add_subplot(frame_num, 1, frame_i+1)
    ax.imshow(ia.array_nor(tf.imread(os.path.join(data_folder, fns[frame_i]))), cmap='gray',
              vmin=0, vmax=0.5, interpolation='nearest')
    ax.set_title(fns[frame_i])
    ax.set_axis_off()

plt.tight_layout()
plt.show()