Exemple #1
0
def readDataFromSpreadsheet(dir="../../",
                            include_nonconnected_cells=False,
                            neuron_connect=False):

    # reading the NeuronConnect.xls file if neuron_connect = True
    if neuron_connect:
        conns = []
        cells = []
        filename = dir + "NeuronConnectFormatted.xlsx"
        rb = open_workbook(filename)
        print "Opened Excel file: " + filename

        for row in range(1, rb.sheet_by_index(0).nrows):
            pre = str(rb.sheet_by_index(0).cell(row, 0).value)
            post = str(rb.sheet_by_index(0).cell(row, 1).value)
            syntype = rb.sheet_by_index(0).cell(row, 2).value
            num = int(rb.sheet_by_index(0).cell(row, 3).value)
            synclass = 'Generic_GJ' if 'EJ' in syntype else 'Chemical_Synapse'

            conns.append(ConnectionInfo(pre, post, num, syntype, synclass))
            if pre not in cells:
                cells.append(pre)
            if post not in cells:
                cells.append(post)

        return cells, conns

    else:
        conns = []
        cells = []
        filename = dir + "CElegansNeuronTables.xls"
        rb = open_workbook(filename)

        print "Opened Excel file: " + filename

        known_nonconnected_cells = ['CANL', 'CANR', 'VC6']

        for row in range(1, rb.sheet_by_index(0).nrows):
            pre = str(rb.sheet_by_index(0).cell(row, 0).value)
            post = str(rb.sheet_by_index(0).cell(row, 1).value)
            syntype = rb.sheet_by_index(0).cell(row, 2).value
            num = int(rb.sheet_by_index(0).cell(row, 3).value)
            synclass = rb.sheet_by_index(0).cell(row, 4).value

            conns.append(ConnectionInfo(pre, post, num, syntype, synclass))
            if pre not in cells:
                cells.append(pre)
            if post not in cells:
                cells.append(post)

        if include_nonconnected_cells:
            for c in known_nonconnected_cells:
                cells.append(c)

        return cells, conns
Exemple #2
0
def readMuscleDataFromSpreadsheet():

    conns = []
    neurons = []
    muscles = []

    filename = "%sCElegansNeuronTables.xls" % spreadsheet_location
    rb = open_workbook(filename)

    print "Opened Excel file: " + filename

    sheet = rb.sheet_by_index(1)

    for row in range(1, sheet.nrows):
        pre = str(sheet.cell(row, 0).value)
        post = str(sheet.cell(row, 1).value)
        syntype = 'Send'
        num = int(sheet.cell(row, 2).value)
        synclass = sheet.cell(row, 3).value.replace(',',
                                                    'plus').replace(' ', '_')

        conns.append(ConnectionInfo(pre, post, num, syntype, synclass))
        if pre not in neurons:
            neurons.append(pre)
        if post not in muscles:
            muscles.append(post)

    return neurons, muscles, conns
def readDataFromSpreadsheet(dir="../../", include_nonconnected_cells=False):

    conns = []
    cells = []
    filename = dir + "CElegansNeuronTables.xls"
    rb = open_workbook(filename)

    print "Opened Excel file: " + filename

    known_nonconnected_cells = ['CANL', 'CANR', 'VC6']

    sheet = rb.sheet_by_index(0)

    for row in range(1, sheet.nrows):
        pre = str(sheet.cell(row, 0).value)
        post = str(sheet.cell(row, 1).value)
        syntype = sheet.cell(row, 2).value
        num = int(sheet.cell(row, 3).value)
        synclass = sheet.cell(row, 4).value

        conns.append(ConnectionInfo(pre, post, num, syntype, synclass))
        if pre not in cells:
            cells.append(pre)
        if post not in cells:
            cells.append(post)

    if include_nonconnected_cells:
        for c in known_nonconnected_cells:
            cells.append(c)

    return cells, conns
Exemple #4
0
    def read(self):
        conns = []
        cells = []
        rb = open_workbook(self.filename)

        print "Opened Excel file: "+ self.filename


        for row in range(2,rb.sheet_by_index(0).nrows):
            pre = str(rb.sheet_by_index(0).cell(row,0).value)
            post = str(rb.sheet_by_index(0).cell(row,1).value)
            syntype = rb.sheet_by_index(0).cell(row,2).value
            num = int(rb.sheet_by_index(0).cell(row,3).value)
            synclass = rb.sheet_by_index(0).cell(row,4).value

            conns.append(ConnectionInfo(pre, post, num, syntype, synclass))
            if pre not in cells:
                cells.append(pre)
            if post not in cells:
                cells.append(post)


          # print "------------------------------------------\nConnection %i has %i from %s to %s (type: %s, synapse: %s)" %(row, num, pre, post, syntype, synclass)


        # print "----------------------------------------------------------------------"

        return cells, conns
Exemple #5
0
    def read(self):
        conns = []
        cells = []

        cell_names = owr.get_cells_in_model()

        for s in self.all_connections:
            pre = str(s.pre_cell().name())
            post = str(s.post_cell().name())

            if isinstance(
                    s.post_cell(),
                    P.Neuron) and pre in cell_names and post in cell_names:
                syntype = str(s.syntype())
                syntype = syntype[0].upper() + syntype[1:]
                num = int(s.number())
                synclass = str(s.synclass())
                ci = ConnectionInfo(pre, post, num, syntype, synclass)
                conns.append(ci)
                if pre not in cells:
                    cells.append(pre)
                if post not in cells:
                    cells.append(post)

        logger.info("Total cells read " + str(len(cells)))
        logger.info("Total connections read " + str(len(conns)))
        P.disconnect()
        return cells, conns
Exemple #6
0
def readDataFromSpreadsheet(dir="../../"):

    conns = []
    cells = []
    filename = dir + "CElegansNeuronTables.xls"
    rb = open_workbook(filename)

    print "Opened Excel file: " + filename

    for row in range(2, rb.sheet_by_index(0).nrows):
        pre = str(rb.sheet_by_index(0).cell(row, 0).value)
        post = str(rb.sheet_by_index(0).cell(row, 1).value)
        syntype = rb.sheet_by_index(0).cell(row, 2).value
        num = int(rb.sheet_by_index(0).cell(row, 3).value)
        synclass = rb.sheet_by_index(0).cell(row, 4).value

        conns.append(ConnectionInfo(pre, post, num, syntype, synclass))
        if pre not in cells:
            cells.append(pre)
        if post not in cells:
            cells.append(post)

    # print "------------------------------------------\nConnection %i has %i from %s to %s (type: %s, synapse: %s)" %(row, num, pre, post, syntype, synclass)

    # print "----------------------------------------------------------------------"

    return cells, conns
Exemple #7
0
def readMuscleDataFromSpreadsheet():
    """
    Returns:
        neurons (:obj:`list` of :obj:`str`): List of motor neurons. Each neuron has at least one connection with a post-synaptic muscle cell.
        muscles (:obj:`list` of :obj:`str`): List of muscle cells.
        conns (:obj:`list` of :obj:`ConnectionInfo`): List of neuron-muscle connections.
    """

    neurons = []
    muscles = []
    conns = []

    with open(filename, 'rb') as f:
        reader = csv.DictReader(f)
        print "Opened file: " + filename

        for row in reader:
            pre, post, num, syntype, synclass = parse_row(row)

            if not is_neuron(pre) or not is_body_wall_muscle(post):
                # Don't add connections unless pre=neuron and post=body_wall_muscle
                continue

            pre = remove_leading_index_zero(pre)
            post = get_old_muscle_name(post)

            conns.append(ConnectionInfo(pre, post, num, syntype, synclass))
            #print ConnectionInfo(pre, post, num, syntype, synclass)
            if pre not in neurons:
                neurons.append(pre)
            if post not in muscles:
                muscles.append(post)

    return neurons, muscles, conns
Exemple #8
0
    def readMuscleData(self):

        conns = []
        neurons = []
        muscles = []
        for s in self.muscle_connections:
            pre = str(s.pre_cell().name())
            post = str(s.post_cell().name())
            syntype = str(s.syntype())
            num = int(s.number())
            synclass = str(s.synclass())

            conns.append(ConnectionInfo(pre, post, num, syntype, synclass))

            if isinstance(s.post_cell(), P.Muscle) and post not in muscles:
                muscles.append(post)
            elif post not in neurons:
                neurons.append(post)

            if isinstance(s.pre_cell(), P.Muscle) and pre not in muscles:
                muscles.append(pre)
            elif post not in neurons:
                neurons.append(pre)

        logger.info("Total neurons connected to muscles read " + str(len(neurons)))
        logger.info("Total muscles connected to neurons read " + str(len(muscles)))
        logger.info("Total connections between neurons and muscles read " + str(len(conns)))

        return neurons, muscles, conns
Exemple #9
0
    def read(self, include_nonconnected_cells=False):

        conns = []
        cells = []
        for s in self.neuron_connections:
            pre = str(s.pre_cell().name())
            post = str(s.post_cell().name())
            syntype = str(s.syntype())
            num = int(s.number())
            synclass = str(s.synclass())

            conns.append(ConnectionInfo(pre, post, num, syntype, synclass))

            if pre not in cells:
                cells.append(pre)
            if post not in cells:
                cells.append(post)

        known_nonconnected_cells = ['CANL', 'CANR', 'VC6']
        # ignore the cells unconnected if neuron_connect = True
        if(include_nonconnected_cells):
            for c in known_nonconnected_cells:
                # to avoid an exception: nonconnected cell becomes connected.
                if c not in cells:
                    cells.append(c)

        logger.info("Total cells read " + str(len(cells)))
        logger.info("Total connections read " + str(len(conns)))
        return cells, conns
Exemple #10
0
    def read(self):
        conns = []
        cells = []
        for s in self.net.synapses():
            pre = str(s[0])
            post = str(s[1])
            syntype = str(s[2][0])
            num = int(s[2][2])
            synclass = str(s[2][2])

            conns.append(ConnectionInfo(pre, post, num, syntype, synclass))

            if pre not in cells:
                cells.append(pre)
            if post not in cells:
                cells.append(post)

        return cells, conns
    def read(self):
        conns = []
        cells = []
        for s in self.all_connections:
            pre = str(s.pre_cell())
            post = str(s.post_cell())
            syntype = str(s.syntype())
            num = int(s.number())
            synclass = str(s.synclass())

            conns.append(ConnectionInfo(pre, post, num, syntype, synclass))

            if pre not in cells:
                cells.append(pre)
            if post not in cells:
                cells.append(post)

        logger.info("Total cells read " + str(len(cells)))
        logger.info("Total connections read " + str(len(conns)))
        P.disconnect()
        return cells, conns
Exemple #12
0
def readDataFromSpreadsheet(include_nonconnected_cells=False):
    """
    Args:
        include_nonconnected_cells (bool): Also append neurons without known connections to other neurons to the 'cells' list. True if they should get appended, False otherwise.
    Returns:
        cells (:obj:`list` of :obj:`str`): List of neurons
        conns (:obj:`list` of :obj:`ConnectionInfo`): List of connections from neuron to neuron
    """

    conns = []
    cells = []

    with open(filename, 'r') as f:
        reader = csv.DictReader(f)
        print_("Opened file: " + filename)

        known_nonconnected_cells = ['CANL', 'CANR']

        for row in reader:
            pre, post, num, syntype, synclass = parse_row(row)

            if not is_neuron(pre) or not is_neuron(post):
                continue  # pre or post is not a neuron

            pre = remove_leading_index_zero(pre)
            post = remove_leading_index_zero(post)

            conns.append(ConnectionInfo(pre, post, num, syntype, synclass))
            #print ConnectionInfo(pre, post, num, syntype, synclass)
            if pre not in cells:
                cells.append(pre)
            if post not in cells:
                cells.append(post)

        if include_nonconnected_cells:
            for c in known_nonconnected_cells:
                if c not in cells:
                    cells.append(c)

    return cells, conns
Exemple #13
0
def read_data(include_nonconnected_cells=False):

    print_("Initialising OpenWormReader")
    P.connect()
    net = P.Worm().get_neuron_network()
    all_connections = net.synapses()
    print_("Finished initialising OpenWormReader")

    conns = []
    cells = []

    cell_names = get_cells_in_model(net)

    for s in all_connections:
        pre = str(s.pre_cell().name())
        post = str(s.post_cell().name())

        if isinstance(s.post_cell(),
                      P.Neuron) and pre in cell_names and post in cell_names:
            syntype = str(s.syntype())
            syntype = syntype[0].upper() + syntype[1:]
            num = int(s.number())
            synclass = str(s.synclass())
            ci = ConnectionInfo(pre, post, num, syntype, synclass)
            conns.append(ci)
            if pre not in cells:
                cells.append(pre)
            if post not in cells:
                cells.append(post)

    print_("Total cells %i (%i with connections)" %
           (len(cell_names), len(cells)))
    print_("Total connections found %i " % len(conns))
    P.disconnect()

    if include_nonconnected_cells:
        return cell_names, conns
    else:
        return cells, conns