def testShotNoiseFromSpikes(self):


        stg = stgen.StGen()

        from numpy import array

        st = stg.poisson_generator(10.0,0.0,1000.0)
        
        ge = stgen.shotnoise_fromspikes(st,2.0,10.0,dt=0.1)

        assert ge.t_start==0.0
        assert ge.t_stop==1000.0

        st = stg.poisson_generator(10.0,0.0,1000.0)
        ge = stgen.shotnoise_fromspikes(st,2.0,10.0,dt=0.1,t_start=500.0,t_stop=1500.0)
        
        assert ge.t_start==500.0
        assert ge.t_stop==1500.0
Exemple #2
0
    def testShotNoiseFromSpikes(self):

        stg = stgen.StGen()

        from numpy import array

        st = stg.poisson_generator(10.0, 0.0, 1000.0)

        ge = stgen.shotnoise_fromspikes(st, 2.0, 10.0, dt=0.1)

        assert ge.t_start == 0.0
        assert ge.t_stop == 1000.0

        st = stg.poisson_generator(10.0, 0.0, 1000.0)
        ge = stgen.shotnoise_fromspikes(st,
                                        2.0,
                                        10.0,
                                        dt=0.1,
                                        t_start=500.0,
                                        t_stop=1500.0)

        assert ge.t_start == 500.0
        assert ge.t_stop == 1500.0
# generate shot noise from step poisson

from NeuroTools import stgen

clf()
stg = stgen.StGen()

rate = numpy.array([6.0,10.0,6.0,6.0])
t = numpy.array([0.0,100.0,200.0,300.0])


q = 2.0
tau = 10.0

trials = 1000
st = stg.inh_poisson_generator(rate, t, 300.0)
g,tsn = stgen.shotnoise_fromspikes(st,q,tau,dt=0.1,t_start=0.0,t_stop=300.0,array=True)
for i in range(trials-1):
    st = stg.inh_poisson_generator(rate, t, 300.0)
    g_tmp,tmp = stgen.shotnoise_fromspikes(st,q,tau,dt=0.1,t_start=0.0,t_stop=300.0,array=True)
    g+=g_tmp

plot(t,rate,'b:',ls='steps-post',lw=2)
plot(tsn,g/q/tau/trials*1000.0,'r-',lw=2)
xlabel('time [ms]',size=20)
xticks(size=16)
ylabel(r'$\nu(t)$ [Hz]',size=20)
yticks(size=16)

Exemple #4
0
clf()
stg = stgen.StGen()

rate = numpy.array([6.0, 10.0, 6.0, 6.0])
t = numpy.array([0.0, 100.0, 200.0, 300.0])

q = 2.0
tau = 10.0

trials = 1000
st = stg.inh_poisson_generator(rate, t, 300.0)
g, tsn = stgen.shotnoise_fromspikes(st,
                                    q,
                                    tau,
                                    dt=0.1,
                                    t_start=0.0,
                                    t_stop=300.0,
                                    array=True)
for i in range(trials - 1):
    st = stg.inh_poisson_generator(rate, t, 300.0)
    g_tmp, tmp = stgen.shotnoise_fromspikes(st,
                                            q,
                                            tau,
                                            dt=0.1,
                                            t_start=0.0,
                                            t_stop=300.0,
                                            array=True)
    g += g_tmp

plot(t, rate, 'b:', ls='steps-post', lw=2)
pylab.plot(time_axis, cc, label = 'no correlation', alpha = 0.5)

# inject correlation into st1 and st2 
st3 = sg.poisson_generator(rate = rate_shared, t_stop = duration) 
st1.merge(st3)
st2.merge(st3)

cc2 = numpy.correlate(st1.time_histogram(time_bin = 1.), 
                      st2.time_histogram(time_bin = 1.), 
                      mode = 'same')

pylab.plot(time_axis, cc2, label = '10% correlation', alpha = 0.5)
pylab.legend()
pylab.show()

#generate shot noise from st1
st1_shot = stgen.shotnoise_fromspikes(st1, 
                                      q = 1.0, 
                                      tau = 10., 
                                      t_start = st1.t_start, 
                                      t_stop = st1.t_stop)
f = pylab.figure()
pylab.plot(st1_shot.signal)
f.gca().set_title('shot noise')
f.gca().set_xlabel('time [ms]')

# spike triggered average reveals the original shot-noise kernel
sta = st1_shot.event_triggered_average(st1, display = True, average = True)