Exemple #1
0
 def setUp(self):
     self.D = 40
     self.hs_custom = HarmonySearch(D=self.D,
                                    nFES=1000,
                                    benchmark=MyBenchmark())
     self.hs_griewank = HarmonySearch(D=self.D,
                                      nFES=1000,
                                      benchmark=Griewank())
Exemple #2
0
def plot_example(D=10, nFES=50000):
    task = TaskConvPlot(D=D, nFES=nFES, nGEN=50000, benchmark=MyBenchmark())
    algo = HarmonySearch(HMS=50,
                         r_accept=0.7,
                         r_pa=0.2,
                         b_range=1.1,
                         task=task)
    best = algo.run()
    logger.info('%s %s' % (best[0], best[1]))
    input('Press [enter] to continue')
Exemple #3
0
def logging_example(D=10, nFES=50000):
    task = TaskConvPrint(D=D, nFES=nFES, nGEN=50000, benchmark=MyBenchmark())
    algo = HarmonySearch(HMS=50,
                         r_accept=0.7,
                         r_pa=0.2,
                         b_range=1.1,
                         seed=None,
                         task=task)
    best = algo.run()
    logger.info('%s %s' % (best[0], best[1]))
Exemple #4
0
def simple_example(runs=10, D=10, nFES=50000):
    for i in range(runs):
        algo = HarmonySearch(D=D,
                             nFES=nFES,
                             HMS=50,
                             r_accept=0.7,
                             r_pa=0.2,
                             b_range=1.1,
                             benchmark=MyBenchmark())
        best = algo.run()
        logger.info('%s %s' % (best[0], best[1]))
Exemple #5
0
 def test_custom_works_fine(self):
     hs_costom = HarmonySearch(D=self.D,
                               nFES=self.nFES,
                               nGEN=self.nGEN,
                               seed=self.seed,
                               benchmark=MyBenchmark())
     hs_costomc = HarmonySearch(D=self.D,
                                nFES=self.nFES,
                                nGEN=self.nGEN,
                                seed=self.seed,
                                benchmark=MyBenchmark())
     AlgorithmTestCase.algorithm_run_test(self, hs_costom, hs_costomc)
Exemple #6
0
 def test_griewank_works_fine(self):
     hs_griewank = HarmonySearch(D=self.D,
                                 nFES=self.nFES,
                                 nGEN=self.nGEN,
                                 seed=self.seed,
                                 benchmark=Griewank())
     hs_griewankc = HarmonySearch(D=self.D,
                                  nFES=self.nFES,
                                  nGEN=self.nGEN,
                                  seed=self.seed,
                                  benchmark=Griewank())
     AlgorithmTestCase.algorithm_run_test(self, hs_griewank, hs_griewankc)
Exemple #7
0
class HSTestCase(TestCase):
    def setUp(self):
        self.D = 40
        self.hs_custom = HarmonySearch(D=self.D,
                                       nFES=1000,
                                       benchmark=MyBenchmark())
        self.hs_griewank = HarmonySearch(D=self.D,
                                         nFES=1000,
                                         benchmark=Griewank())

    def test_custom_works_fine(self):
        fun = MyBenchmark().function()
        x = self.hs_custom.run()
        self.assertTrue(x)
        self.assertAlmostEqual(fun(self.D, x[0]), x[1], delta=1e2)

    def test_griewank_works_fine(self):
        fun = Griewank().function()
        x = self.hs_griewank.run()
        self.assertTrue(x)
        self.assertAlmostEqual(fun(self.D, x[0]), x[1], delta=1e2)
Exemple #8
0
 def test_type_parameters(self):
     d = HarmonySearch.typeParameters()
     self.assertIsNotNone(d.get('HMS', None))
     self.assertTrue(d['HMS'](10))
     self.assertFalse(d['HMS'](-10))
     self.assertFalse(d['HMS'](-10.3))
     self.assertIsNotNone(d.get('r_accept', None))
     self.assertTrue(d['r_accept'](.3))
     self.assertTrue(d['r_accept'](0.99))
     self.assertFalse(d['r_accept'](-0.99))
     self.assertFalse(d['r_accept'](9))
     self.assertIsNotNone(d.get('r_pa', None))
     self.assertTrue(d['r_pa'](.3))
     self.assertTrue(d['r_pa'](0.99))
     self.assertFalse(d['r_pa'](-0.99))
     self.assertFalse(d['r_pa'](9))
     self.assertIsNotNone(d.get('b_range', None))
     self.assertTrue(d['b_range'](10))
     self.assertFalse(d['b_range'](-10))
     self.assertFalse(d['b_range'](-10.3))
Exemple #9
0
 def test_griewank_works_fine(self):
     hs_griewank = HarmonySearch(seed=self.seed)
     hs_griewankc = HarmonySearch(seed=self.seed)
     AlgorithmTestCase.algorithm_run_test(self, hs_griewank, hs_griewankc)
Exemple #10
0
 def test_custom_works_fine(self):
     hs_costom = HarmonySearch(seed=self.seed)
     hs_costomc = HarmonySearch(seed=self.seed)
     AlgorithmTestCase.algorithm_run_test(self, hs_costom, hs_costomc,
                                          MyBenchmark())
Exemple #11
0
# encoding=utf8
# This is temporary fix to import module from parent folder
# It will be removed when package is published on PyPI
import sys

sys.path.append('../')
# End of fix

import random
from NiaPy.algorithms.basic import HarmonySearch
from NiaPy.util import StoppingTask, OptimizationType
from NiaPy.benchmarks import Sphere

#we will run Harmony Search for 5 independent runs
for i in range(5):
    task = StoppingTask(D=10,
                        nFES=10000,
                        optType=OptimizationType.MINIMIZATION,
                        benchmark=Sphere())
    algo = HarmonySearch()
    best = algo.run(task=task)
    print(best)