def test_griewank_works_fine(self): mke_griewank = MonkeyKingEvolutionV3(n=10, C_a=5, C_r=0.5, seed=self.seed) mke_griewankc = MonkeyKingEvolutionV3(n=10, C_a=5, C_r=0.5, seed=self.seed) AlgorithmTestCase.algorithm_run_test(self, mke_griewank, mke_griewankc)
def test_custom_works_fine(self): mke_custom = MonkeyKingEvolutionV3(n=10, C_a=2, C_r=0.5, seed=self.seed) mke_customc = MonkeyKingEvolutionV3(n=10, C_a=2, C_r=0.5, seed=self.seed) AlgorithmTestCase.algorithm_run_test(self, mke_custom, mke_customc, MyBenchmark())
def setUp(self): self.D = 40 self.mkev3_custom = MonkeyKingEvolutionV3(D=self.D, nFES=1000, n=10, C_a=2, C_r=0.5, benchmark=MyBenchmark()) self.mkev3_griewank = MonkeyKingEvolutionV3(D=self.D, nFES=1000, n=10, C_a=5, C_r=0.5, benchmark=Griewank())
def test_griewank_works_fine(self): mke_griewank = MonkeyKingEvolutionV3(D=self.D, nFES=self.nFES, nGEN=self.nGEN, n=10, C_a=5, C_r=0.5, benchmark=Griewank(), seed=self.seed) mke_griewankc = MonkeyKingEvolutionV3(D=self.D, nFES=self.nFES, nGEN=self.nGEN, n=10, C_a=5, C_r=0.5, benchmark=Griewank(), seed=self.seed) AlgorithmTestCase.algorithm_run_test(self, mke_griewank, mke_griewankc)
def test_custom_works_fine(self): mke_custom = MonkeyKingEvolutionV3(D=self.D, nFES=self.nFES, nGEN=self.nGEN, n=10, C_a=2, C_r=0.5, benchmark=MyBenchmark(), seed=self.seed) mke_customc = MonkeyKingEvolutionV3(D=self.D, nFES=self.nFES, nGEN=self.nGEN, n=10, C_a=2, C_r=0.5, benchmark=MyBenchmark(), seed=self.seed) AlgorithmTestCase.algorithm_run_test(self, mke_custom, mke_customc)
# encoding=utf8 # This is temporary fix to import module from parent folder # It will be removed when package is published on PyPI import sys sys.path.append('../') # End of fix import random from NiaPy.algorithms.basic import MonkeyKingEvolutionV3 from NiaPy.util import StoppingTask, OptimizationType from NiaPy.benchmarks import Sphere # we will run Nelder Mead algorithm for 5 independent runs for i in range(5): task = StoppingTask(D=10, nGEN=50, optType=OptimizationType.MINIMIZATION, benchmark=Sphere()) algo = MonkeyKingEvolutionV3() best = algo.run(task=task) print('%s -> %s' % (best[0], best[1])) # vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3
def plot_example(D=10, nFES=50000, nGEN=100000, seed=None, optType=OptimizationType.MINIMIZATION, optFunc=MinMB, **kn): task = TaskConvPlot(D=D, nFES=nFES, nGEN=nGEN, optType=optType, benchmark=optFunc()) algo = MonkeyKingEvolutionV3(NP=25, C=3, F=0.5, FC=0.5, R=0.4, task=task) best = algo.run() logger.info('%s %s' % (best[0], best[1])) input('Press [enter] to continue')
def simple_example(runs=10, D=10, nFES=50000, nGEN=100000, seed=None, optType=OptimizationType.MINIMIZATION, optFunc=MinMB, **kn): for i in range(10): Algorithm = MonkeyKingEvolutionV3(D=D, nFES=nFES, NP=25, C=3, F=0.5, FC=0.5, R=0.4, optType=optType, benchmark=optFunc()) Best = Algorithm.run() logger.info('%s %s' % (Best[0], Best[1]))