class NMMTestCase(TestCase): def setUp(self): self.D = 40 self.nmm_custom = NelderMeadMethod(D=self.D, nFES=1000, n=10, C_a=2, C_r=0.5, benchmark=MyBenchmark()) self.nmm_griewank = NelderMeadMethod(D=self.D, nFES=1000, n=10, C_a=5, C_r=0.5, benchmark=Griewank()) def test_custom_works_fine(self): fun = MyBenchmark().function() x = self.nmm_custom.run() self.assertTrue(x) self.assertAlmostEqual(fun(self.D, x[0]), x[1], delta=1e2) def test_griewank_works_fine(self): fun = Griewank().function() x = self.nmm_griewank.run() self.assertTrue(x) self.assertAlmostEqual(fun(self.D, x[0]), x[1], delta=1e2)
# encoding=utf8 # This is temporary fix to import module from parent folder # It will be removed when package is published on PyPI import sys sys.path.append('../') # End of fix import random from NiaPy.algorithms.other import NelderMeadMethod from NiaPy.util import StoppingTask, OptimizationType from NiaPy.benchmarks import Sphere # we will run Nelder Mead algorithm for 5 independent runs for i in range(5): task = StoppingTask(D=10, nGEN=10000, optType=OptimizationType.MINIMIZATION, benchmark=Sphere()) algo = NelderMeadMethod(NP=70, alpha=0.2, gamma=0.1, rho=-0.24, sigma=-0.1) best = algo.run(task=task) print('%s -> %s' % (best[0], best[1]))
def logging_example(D=100, nFES=50000): task = TaskConvPrint(D=D, nFES=nFES, nGEN=10000, benchmark=MyBenchmark()) algo = NelderMeadMethod(task=task, n=15, C_a=1, C_r=0.5) best = algo.run() logger.info('%s %s' % (best[0], best[1]))
def plot_example(D=100, nFES=50000): task = TaskConvPlot(D=D, nFES=nFES, nGEN=10000, benchmark=MyBenchmark()) algo = NelderMeadMethod(task=task, n=15, C_a=1, C_r=0.5) best = algo.run() logger.info('%s %s' % (best[0], best[1])) input('Press [enter] to continue')
def simple_example(runs=10, D=10, nFES=50000): for i in range(runs): algo = NelderMeadMethod(D=D, nFES=nFES, n=15, C_a=1, C_r=0.5, benchmark=MyBenchmark()) best = algo.run() logger.info('%s %s' % (best[0], best[1]))