Exemple #1
0
def predownload(nnDir):
    import os
    import sys
    # change this property
    NOMEROFF_NET_DIR = os.path.abspath(nnDir)
    sys.path.append(NOMEROFF_NET_DIR)

    from NomeroffNet.YoloV5Detector import Detector

    detector = Detector()
    detector.load()

    from NomeroffNet.BBoxNpPoints import NpPointsCraft, getCvZoneRGB, convertCvZonesRGBtoBGR, reshapePoints
    npPointsCraft = NpPointsCraft()
    npPointsCraft.load()

    from NomeroffNet.OptionsDetector import OptionsDetector
    from NomeroffNet.TextDetector import TextDetector
    from NomeroffNet.TextPostprocessing import textPostprocessing

    # load models
    optionsDetector = OptionsDetector()
    optionsDetector.load("latest")

    textDetector = TextDetector.get_static_module("eu")()
    textDetector.load("latest")

    return npPointsCraft, optionsDetector, textDetector, detector
Exemple #2
0
from NomeroffNet import __version__
from NomeroffNet.YoloV5Detector import Detector

detector = Detector()
detector.load()

from NomeroffNet.BBoxNpPoints import (NpPointsCraft, getCvZoneRGB,
                                      convertCvZonesRGBtoBGR, reshapePoints)

npPointsCraft = NpPointsCraft()
npPointsCraft.load()

from NomeroffNet.OptionsDetector import OptionsDetector
from NomeroffNet.TextDetector import TextDetector

optionsDetector = OptionsDetector()
optionsDetector.load("latest")

# Initialize text detector.
textDetector = TextDetector({
    "eu_ua_2004_2015": {
        "for_regions": ["eu_ua_2015", "eu_ua_2004"],
        "model_path": "latest"
    },
    "eu_ua_1995": {
        "for_regions": ["eu_ua_1995"],
        "model_path": "latest"
    },
    "eu": {
        "for_regions": ["eu"],
        "model_path": "latest"
Exemple #3
0
detector = Detector()
detector.load()

from NomeroffNet.BBoxNpPoints import (NpPointsCraft,
                                      getCvZoneRGB,
                                      convertCvZonesRGBtoBGR,
                                      reshapePoints)

npPointsCraft = NpPointsCraft()
npPointsCraft.load()

from NomeroffNet.OptionsDetector import OptionsDetector
from NomeroffNet.TextDetector import TextDetector

optionsDetector = OptionsDetector()
optionsDetector.load("latest")

# Initialize text detector.
textDetector = TextDetector({
    "eu_ua_2004_2015": {
        "for_regions": ["eu_ua_2015", "eu_ua_2004"],
        "model_path": "latest"
    },
    "eu_ua_1995": {
        "for_regions": ["eu_ua_1995"],
        "model_path": "latest"
    },
    "eu": {
        "for_regions": ["eu"],
        "model_path": "latest"
Exemple #4
0
def main():
    args = parse_args()
    filepath = args["filepath"]
    batch_size = args["batch_size"]
    n = args["number_tests"]

    options_detector = OptionsDetector()
    options_detector.load("latest")
    print(f"[INFO] torch model", options_detector.model)

    # get device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"[INFO] device", device)

    # get model and model inputs
    model = options_detector.model
    model = model.to(device)
    x = torch.randn(batch_size,
                    options_detector.color_channels,
                    options_detector.height,
                    options_detector.width,
                    requires_grad=True)
    x = x.to(device)

    # make dirs
    p = pathlib.Path(os.path.dirname(filepath))
    p.mkdir(parents=True, exist_ok=True)

    # Export the model
    model.to_onnx(
        filepath,
        x,
        export_params=
        True,  # store the trained parameter weights inside the model file
        opset_version=10,  # the ONNX version to export the model to
        do_constant_folding=
        True,  # whether to execute constant folding for optimization
        input_names=['inp_conv'],  # the model's input names
        output_names=['fc3_line', 'fc3_reg'],  # the model's output names
        dynamic_axes={
            'inp_conv': {
                0: 'batch_size'
            },  # variable length axes
            'fc3_line': {
                0: 'batch_size'
            },
            'fc3_reg': {
                0: 'batch_size'
            }
        })

    # Test torch model
    outs = model(x)
    start_time = time.time()
    for _ in range(n):
        outs = model(x)
    print(
        f"[INFO] torch time {(time.time() - start_time)/n * 1000}ms torch outs {outs}"
    )

    # Load onnx model
    ort_session = onnxruntime.InferenceSession(filepath)
    input_name = ort_session.get_inputs()[0].name
    ort_inputs = {
        input_name:
        np.random.randn(batch_size, options_detector.color_channels,
                        options_detector.height,
                        options_detector.width).astype(np.float32)
    }

    # run onnx model
    print(f"[INFO] available_providers", onnxruntime.get_available_providers())
    ort_outs = ort_session.run(None, ort_inputs)
    start_time = time.time()
    for _ in range(n):
        ort_outs = ort_session.run(None, ort_inputs)
    print(
        f"[INFO] onnx time {(time.time() - start_time)/n * 1000}ms tensorrt outs {ort_outs}"
    )