Exemple #1
0
  def __init__(self, size, stride=None, pad=False, input_shape=None, **kwargs):

    self.size = size

    if not hasattr(self.size, '__iter__'):
      self.size = (int(self.size), int(self.size))

    if self.size[0] <= 0. or self.size[1] <= 0.:
      raise LayerError('Avgpool layer. Incompatible size dimensions. They must be both > 0')

    if not stride:
      self.stride = size
    else:
      self.stride = stride

    if not hasattr(self.stride, '__iter__'):
      self.stride = (int(self.stride), int(self.stride))

    if len(self.size) != 2 or len(self.stride) != 2:
      raise LayerError('Avgpool layer. Incompatible stride/size dimensions. They must be a 1D-2D tuple of values')

    # for padding
    self.pad = pad
    self.pad_left, self.pad_right, self.pad_bottom, self.pad_top = (0, 0, 0, 0)

    super(Avgpool_layer, self).__init__(input_shape=input_shape)
    self._build(input_shape)
Exemple #2
0
    def __call__(self, previous_layer):

        self._out_shape = [0, 0, 0, 0]

        if self.axis:  # by channels
            for prev in previous_layer:

                if prev.out_shape is None:
                    class_name = self.__class__.__name__
                    prev_name = previous_layer.__class__.__name__
                    raise LayerError(
                        'Incorrect shapes found. Layer {} cannot be connected to the previous {} layer.'
                        .format(class_name, prev_name))

                c = prev.out_shape[3]
                self._out_shape[3] += c
                self._out_shape[0:3] = prev.out_shape[0:3]

        else:  # by batch
            for prev in previous_layer:

                if prev.out_shape is None:
                    class_name = self.__class__.__name__
                    prev_name = previous_layer.__class__.__name__
                    raise LayerError(
                        'Incorrect shapes found. Layer {} cannot be connected to the previous {} layer.'
                        .format(class_name, prev_name))

                b = prev.out_shape[0]
                self._out_shape[0] += b
                self._out_shape[1:4] = prev.out_shape[1:4]

        self._out_shape = tuple(self._out_shape)
        return self
Exemple #3
0
  def add(self, layer):
    '''
    Add a new layer to the network model.
    Layers are progressively appended to the tail of the model.
    '''
    try:
      type_layer = layer.__class__.__name__.lower().split('_layer')[0]

    except:
      raise LayerError('Incorrect Layer type found. Given {}'.format(type_layer.__class__.__name__))

    if type_layer not in self.LAYERS.keys():
      raise LayerError('Incorrect Layer type found.')

    if type_layer == 'input':
      self._net.append(layer)

    elif type_layer == 'route':
      prev_layers = []
      for idx in layer.input_layers:
        prev_layers.append(self._net[idx]) # i need layers' info to init route

      self._net.append(layer(prev_layers))

    else:
      self._net.append(layer(self._net[-1]))

    return self
Exemple #4
0
  def __call__(self, previous_layer):

    if previous_layer.out_shape is None:
      class_name = self.__class__.__name__
      prev_name  = layer.__class__.__name__
      raise LayerError('Incorrect shapes found. Layer {} cannot be connected to the previous {} layer.'.format(class_name, prev_name))

    b, w, h, c = previous_layer.out_shape

    if b < self.steps:
      class_name = self.__class__.__name__
      prev_name  = layer.__class__.__name__
      raise LayerError('Incorrect steps found. Layer {} cannot be connected to the previous {} layer.'.format(class_name, prev_name))

    self.batch = b // self.steps
    self.input_shape = (self.batch, w, h, c)
    indices = np.arange(0, b)

    self.batches = np.lib.stride_tricks.as_strided(indices, shape=(self.steps, self.batch), strides=(self.batch * 8, 8)).copy()

    self.input_layer  = Connected_layer(self.outputs, self.activation, input_shape=(self.batches[-1][-1] + 1, w, h, c))
    self.self_layer   = Connected_layer(self.outputs, self.activation)(self.input_layer)
    self.output_layer = Connected_layer(self.outputs, self.activation)(self.self_layer)

    self.state = np.zeros(shape=(self.batch, w, h, self.outputs), dtype=float)

    self.output, self.delta = (None, None)

    return self
  def __init__(self, filters, size, stride=None, input_shape=None,
               weights=None, bias=None,
               pad=False,
               activation=Activations,
               **kwargs):

    if isinstance(filters, int) and filters > 0:
      self.channels_out = filters
    else:
      raise ValueError('Parameter "filters" must be an integer and > 0')

    self.size = size
    if not hasattr(self.size, '__iter__'):
      self.size = (int(self.size), int(self.size))

    if self.size[0] <= 0. or self.size[1] <= 0.:
      raise LayerError('Convolutional layer. Incompatible size values. They must be both > 0')

    if not stride:
      self.stride = size
    else:
      self.stride = stride

    if not hasattr(self.stride, '__iter__'):
      self.stride = (int(self.stride), int(self.stride))

    if self.stride[0] <= 0. or self.stride[1] <= 0.:
      raise LayerError('Convolutional layer. Incompatible stride values. They must be both > 0')

    if len(self.size) != 2 or len(self.stride) != 2:
      raise LayerError('Convolutional layer. Incompatible stride/size dimensions. They must be a 1D-2D tuple of values')

    # Weights and bias
    self.weights = weights
    self.bias    = bias

    # Activation function
    activation = _check_activation(self, activation)

    self.activation = activation.activate
    self.gradient   = activation.gradient

    # Padding
    self.pad = pad
    self.pad_left, self.pad_right, self.pad_bottom, self.pad_top = (0, 0, 0, 0)

    # Output, Delta and Updates
    self.weights_update = None
    self.bias_update    = None
    self.optimizer      = None

    if input_shape is not None:
      super(Convolutional_layer, self).__init__(input_shape=input_shape)
      self._build()
Exemple #6
0
    def __init__(self,
                 size,
                 stride=None,
                 pad=False,
                 input_shape=None,
                 **kwargs):
        '''
    Avgpool layer

    Parameters
    ----------
      size    : tuple with two integers (kx, ky) or integer, size of the kernel to be slided over the input image.
      stride  : tuple of two integers, default None. Represents the horizontal and vertical stride of the kernel.
                If None or 0, stride is assigned the values of size.
      input_shape : tuple of 4 integers: input shape of the layer.
      pad     : boolean, default False. If False the image is cut to fit the size and stride dimensions, if True the
                image is padded following keras SAME padding, as indicated here:
                https://stackoverflow.com/questions/53819528/how-does-tf-keras-layers-conv2d-with-padding-same-and-strides-1-behave
    '''

        self.size = size

        if not hasattr(self.size, '__iter__'):
            self.size = (int(self.size), int(self.size))

        if self.size[0] <= 0. or self.size[1] <= 0.:
            raise LayerError(
                'Avgpool layer. Incompatible size dimensions. They must be both > 0'
            )

        if not stride:
            self.stride = size
        else:
            self.stride = stride

        if not hasattr(self.stride, '__iter__'):
            self.stride = (int(self.stride), int(self.stride))

        if len(self.size) != 2 or len(self.stride) != 2:
            raise LayerError(
                'Avgpool layer. Incompatible stride/size dimensions. They must be a 1D-2D tuple of values'
            )

        # for padding
        self.pad = pad
        self.pad_left, self.pad_right, self.pad_bottom, self.pad_top = (0, 0,
                                                                        0, 0)

        super(Avgpool_layer, self).__init__(input_shape=input_shape)
        self._build(input_shape)
Exemple #7
0
  def __call__(self, previous_layer):

      if previous_layer.out_shape is None:
        class_name = self.__class__.__name__
        prev_name  = layer.__class__.__name__
        raise LayerError('Incorrect shapes found. Layer {} cannot be connected to the previous {} layer.'.format(class_name, prev_name))

      b, w, h, c = previous_layer.out_shape

      if b < self.steps:
        class_name = self.__class__.__name__
        prev_name  = layer.__class__.__name__
        raise LayerError('Incorrect steps found. Layer {} cannot be connected to the previous {} layer.'.format(class_name, prev_name))

      self.batch = b // self.steps
      self.input_shape = (self.batch, w, h, c)
      indices = np.arange(0, b, dtype='int64')

      self.batches = np.lib.stride_tricks.as_strided(indices, shape=(b - self.steps + 1, self.steps), strides=(8, 8)).T.copy()

      initial_shape = (self.batch, w, h, c)

      self.uf = Connected_layer(self.outputs, activation='Linear', input_shape=initial_shape)
      self.ui = Connected_layer(self.outputs, activation='Linear', input_shape=initial_shape)
      self.ug = Connected_layer(self.outputs, activation='Linear', input_shape=initial_shape)
      self.uo = Connected_layer(self.outputs, activation='Linear', input_shape=initial_shape)

      self.wf = Connected_layer(self.outputs, activation='Linear', input_shape=(self.batch, 1, 1, self.outputs))
      self.wi = Connected_layer(self.outputs, activation='Linear', input_shape=(self.batch, 1, 1, self.outputs))
      self.wg = Connected_layer(self.outputs, activation='Linear', input_shape=(self.batch, 1, 1, self.outputs))
      self.wo = Connected_layer(self.outputs, activation='Linear', input_shape=(self.batch, 1, 1, self.outputs))

      self.uf.input_shape = (b, w, h, c)
      self.ui.input_shape = (b, w, h, c)
      self.ug.input_shape = (b, w, h, c)
      self.uo.input_shape = (b, w, h, c)

      self.wf.input_shape = (b, w, h, self.outputs)
      self.wi.input_shape = (b, w, h, self.outputs)
      self.wg.input_shape = (b, w, h, self.outputs)
      self.wo.input_shape = (b, w, h, self.outputs)

      self.state = np.zeros(shape=(self.batch, w, h, self.outputs), dtype=float)

      self.output = np.empty(shape=self.uf.out_shape, dtype=float)
      self.cell = np.empty(shape=self.uf.out_shape, dtype=float)
      self.delta = None
      self.optimizer = None

      return self
Exemple #8
0
    def add(self, layer):
        '''
    Add a new layer to the network model.
    Layers are progressively appended to the tail of the model.

    Parameters
    ----------
      layer : Layer object
        Layer object to append to the current architecture

    Returns
    -------
      self

    Notes
    -----
    .. note::
      If the architecture is empty a default InputLayer is used
      to start the model.

    .. warning::
      The input layer type must be one of the types stored into the
      LAYERS dict, otherwise a LayerError is raised.
    '''
        try:
            type_layer = layer.__class__.__name__.lower().split('_layer')[0]

        except:
            raise LayerError('Incorrect Layer type found. Given {}'.format(
                type_layer.__class__.__name__))

        if type_layer not in self.LAYERS.keys():
            raise LayerError('Incorrect Layer type found.')

        if type_layer == 'input':
            self._net.append(layer)

        elif type_layer == 'route':
            prev_layers = []
            for idx in layer.input_layers:
                prev_layers.append(
                    self._net[idx])  # i need layers' info to init route

            self._net.append(layer(prev_layers))

        else:
            self._net.append(layer(self._net[-1]))

        return self
Exemple #9
0
    def __init__(self, input_shape=None, stride=(2, 2), scale=1., **kwargs):
        '''
    Upsample / Downsample layer

    Parameters
    ----------
      input_shape : tuple of 4 integers: input shape of the layer.
      stride : scaling factor of the input;
        Repeats the rows and columns of the data by stride[0] and stride[1] respectively.
      scale  : floating point scale factor of the input
    '''

        self.scale = float(scale)
        self.stride = stride

        if not hasattr(self.stride, '__iter__'):
            self.stride = (int(stride), int(stride))

        if len(self.stride) != 2:
            raise LayerError(
                'Upsample layer. Incompatible stride dimensions. It must be a 1D-2D tuple of values'
            )

        if self.stride[0] < 0 and self.stride[1] < 0:  # downsample
            self.stride = (-self.stride[0], -self.stride[1])
            self.reverse = True

        elif self.stride[0] > 0 and self.stride[1] > 0:  # upsample
            self.reverse = False

        else:
            raise NotImplementedError(
                'Mixture upsample/downsample are not yet implemented')

        super(Upsample_layer, self).__init__(input_shape=input_shape)
Exemple #10
0
    def _stride_index(self, shape1, shape2):
        '''
    Evaluate the strided indexes if the input shapes are different
    '''

        _, w2, h2, c2 = shape1
        _, w1, h1, c1 = shape2
        stride = w1 // w2
        sample = w2 // w1
        stride = stride if stride > 0 else 1
        sample = sample if sample > 0 else 1

        if not (stride == h1 // h2 and sample == h2 // h1):
            class_name = self.__class__.__name__
            prev_name = layer.__class__.__name__
            raise LayerError(
                'Incorrect shapes found. Layer {} cannot be connected to the previous {} layer.'
                .format(class_name, prev_name))

        idx = product(range(0, w2, sample), range(0, h2, sample),
                      range(0, c2, sample))
        self.ix, self.jx, self.kx = zip(*idx)

        idx = product(range(0, w1, stride), range(0, w1, stride),
                      range(0, c1, stride))
        self.iy, self.jy, self.ky = zip(*idx)
Exemple #11
0
  def __call__(self, previous_layer):

    if previous_layer.out_shape is None:
      class_name = self.__class__.__name__
      prev_name  = layer.__class__.__name__
      raise LayerError('Incorrect shapes found. Layer {} cannot be connected to the previous {} layer.'.format(class_name, prev_name))

    self._out_shape = previous_layer.out_shape
    return self
Exemple #12
0
    def __call__(self, previous_layer):

        for prev in previous_layer:

            if prev.out_shape is None:
                class_name = self.__class__.__name__
                prev_name = prev.__class__.__name__
                raise LayerError(
                    'Incorrect shapes found. Layer {0} cannot be connected to the previous {1} layer.'
                    .format(class_name, prev_name))

        self._build(previous_layer)
        return self
Exemple #13
0
  def __call__(self, previous_layer):

    prev1, prev2 = previous_layer

    if prev1.out_shape is None or prev2.out_shape is None:
      class_name = self.__class__.__name__
      prev_name  = layer.__class__.__name__
      raise LayerError('Incorrect shapes found. Layer {} cannot be connected to the previous {} layer.'.format(class_name, prev_name))

    self._out_shape = [prev1.out_shape, prev2.out_shape]

    self._stride_index(prev1.out_shape, prev2.out_shape)

    return self
Exemple #14
0
    def __call__(self, previous_layer):

        if previous_layer.out_shape is None:
            class_name = self.__class__.__name__
            prev_name = layer.__class__.__name__
            raise LayerError(
                'Incorrect shapes found. Layer {} cannot be connected to the previous {} layer.'
                .format(class_name, prev_name))

        self.batch, self.w, self.h, self.c = previous_layer.out_shape

        if self.pad:
            self._evaluate_padding()

        return self
Exemple #15
0
  def __call__(self, previous_layer):
    '''
    Overload operator ()
    '''

    if previous_layer.out_shape is None:
      class_name = self.__class__.__name__
      prev_name  = previous_layer.__class__.__name__
      raise LayerError('Incorrect shapes found. Layer {0} cannot be connected to the previous {1} layer.'.format(class_name, prev_name))

    self.input_shape = previous_layer.out_shape

    self._build()

    return self
    def __call__(self, previous_layer):

        if previous_layer.out_shape is None:
            class_name = self.__class__.__name__
            prev_name = layer.__class__.__name__
            raise LayerError(
                'Incorrect shapes found. Layer {} cannot be connected to the previous {} layer.'
                .format(class_name, prev_name))

        self.batch, self.w, self.h, self.c = previous_layer.out_shape

        if self.pad:
            self._evaluate_padding()

        self.out_w = 1 + (self.w + self.pad_top + self.pad_bottom -
                          self.size[0]) // self.stride[0]
        self.out_h = 1 + (self.h + self.pad_left + self.pad_right -
                          self.size[1]) // self.stride[1]

        return self
    def __init__(self,
                 filters,
                 size,
                 stride=None,
                 input_shape=None,
                 weights=None,
                 bias=None,
                 pad=False,
                 activation=Activations,
                 **kwargs):
        '''
    Convolution Layer: the output is the convolution of the input images
    with a group of kernel of shape size = (kx,ky) with step stride.

    Parameters
    ----------
      filters : integer. Number of filters to be slided over the input, and also
                the number of channels of the output (channels_out)
      size    : tuple of int, size of the kernel of shape (kx, ky).
      stride  : tuple of int, default None. Step of the kernel, with shape (st1, st2).
                If None, stride is assigned size values.
      input_shape : tuple, default None. Shape of the input in the format (batch, w, h, c),
                    None is used when the layer is part of a Network model.
      weights : numpy array, default None. filters of the convolutionanl layer,
                with shape (kx, ky, channels_in, filters). If None, random weights are initialized
      bias : numpy array, default None. Bias of the convolutional layer.
             If None, bias init is random with shape (filters, )
      pad  : boolean, default False. If False the image is cutted along the last raws and columns, if True
             the input is padded following keras SAME padding
      activation : activation function of the layer
    '''

        if isinstance(filters, int) and filters > 0:
            self.channels_out = filters
        else:
            raise ValueError('Parameter "filters" must be an integer and > 0')

        self.size = size
        if not hasattr(self.size, '__iter__'):
            self.size = (int(self.size), int(self.size))

        if self.size[0] <= 0. or self.size[1] <= 0.:
            raise LayerError(
                'Convolutional layer. Incompatible size values. They must be both > 0'
            )

        if not stride:
            self.stride = size
        else:
            self.stride = stride

        if not hasattr(self.stride, '__iter__'):
            self.stride = (int(self.stride), int(self.stride))

        if self.stride[0] <= 0. or self.stride[1] <= 0.:
            raise LayerError(
                'Convolutional layer. Incompatible stride values. They must be both > 0'
            )

        if len(self.size) != 2 or len(self.stride) != 2:
            raise LayerError(
                'Convolutional layer. Incompatible stride/size dimensions. They must be a 1D-2D tuple of values'
            )

        # Weights and bias
        self.weights = weights
        self.bias = bias

        # Activation function
        activation = _check_activation(self, activation)

        self.activation = activation.activate
        self.gradient = activation.gradient

        # Padding
        self.pad = pad
        self.pad_left, self.pad_right, self.pad_bottom, self.pad_top = (0, 0,
                                                                        0, 0)

        # Output, Delta and Updates
        self.weights_update = None
        self.bias_update = None
        self.optimizer = None

        if input_shape is not None:
            super(Convolutional_layer, self).__init__(input_shape=input_shape)
            self._build()
Exemple #18
0
  def __init__(self, outputs, steps, activation=Activations, input_shape=None, weights=None, bias=None, **kwargs):
    '''
    RNN layer

    Parameters
    ----------
      outputs     : integer, number of outputs of the layers
      steps       : integer, number of mini-batch/steps to perform.
      activation  : activation function of the layer
      input_shape : tuple, default None. Shape of the input in the format (batch, w, h, c),
                    None is used when the layer is part of a Network model.
      weights     : array of shape (w * h * c, outputs), default is None. Weights of the dense layer.
                    If None, weights init is random.
      bias        : array of shape (outputs, ), default None. Bias of the connected layer.
                    If None, bias init is random
    '''

    if isinstance(outputs, int) and outputs > 0:
      self.outputs = outputs
    else :
      raise ValueError('Parameter "outputs" must be an integer and > 0')

    if isinstance(steps, int) and steps > 0:
      self.steps = steps
    else :
      raise ValueError('Parameter "steps" must be an integer and > 0')

    if weights is None:
      weights = (None, None, None)
    else:
      if np.shape(weights)[0] != 3:
        raise ValueError('Wrong number of init "weights". There are 3 connected layers into the RNN cell.')

    if bias is None:
      bias = (None, None, None)
    else:
      if np.shape(bias)[0] != 3:
        raise ValueError('Wrong number of init "biases". There are 3 connected layers into the RNN cell.')

    self.activation = _check_activation(self, activation)

    # if input shape is passed, init of weights, else done in  __call__
    if input_shape is not None:
      b, w, h, c = input_shape

      if b < self.steps:
        class_name = self.__class__.__name__
        prev_name  = layer.__class__.__name__
        raise LayerError('Incorrect steps found. Layer {} cannot be connected to the previous {} layer.'.format(class_name, prev_name))

      self.batch = b // self.steps
      self.input_shape = (self.batch, w, h, c)
      indices = np.arange(0, b)
      self.batches = np.lib.stride_tricks.as_strided(indices, shape=(self.steps, self.batch), strides=(self.batch * 8, 8)).copy()

      self.input_layer  = Connected_layer(self.outputs, self.activation, input_shape=(self.batches[-1][-1] + 1, w, h, c), weights=weights[0], bias=bias[0])
      self.self_layer   = Connected_layer(self.outputs, self.activation, weights=weights[1], bias=bias[1])(self.input_layer)
      self.output_layer = Connected_layer(self.outputs, self.activation, weights=weights[2], bias=bias[2])(self.self_layer)

      self.state = np.zeros(shape=(self.batch, w, h, self.outputs), dtype=float)

    else:
      self.batch = None
      self.input_shape = None
      self.batches = None

      self.input_layer = None
      self.self_layer = None
      self.output_layer = None
      self.state = None

    self.prev_state = None
    self.output, self.delta = (None, None)
Exemple #19
0
  # FORWARD

  layer.forward(inpt)
  forward_out = layer.output

  print(layer)

  # BACKWARD

  layer.delta = layer.output.copy()
  delta = np.ones(inpt.shape)
  layer.backward(delta)

  if not np.allclose(delta, inpt):
    raise LayerError('Shuffler layer. Wrong backward results')

  # Visualizations

  fig, (ax1, ax2, ax3) = plt.subplots(nrows=1, ncols=3, figsize=(10, 5))
  fig.subplots_adjust(left=0.1, right=0.95, top=0.95, bottom=0.15)
  fig.suptitle('Shuffler Layer\nscale : {}'.format(scale))

  ax1.imshow(inpt[0, :, :, 0])
  ax1.set_title('Original Image')
  ax1.axis('off')

  ax2.imshow(forward_out[0, :, :, 0])
  ax2.set_title('Forward')
  ax2.axis('off')