def cost_derivative(prob, obj):
    jac = Condition(prob.number_of_variables)
    index_m0 = prob.index_states(4, 0, 0)
    index_mf = prob.index_states(4, 0, -1)
    m = prob.states_all_section(4)
    # jac.change_value(index_m0, - m[-1] / m[0]**2)
    # jac.change_value(index_mf, - 1.0 / m[0])
    jac.change_value(index_mf, -1.0)
    return jac()
def inequality(prob, obj):
    x = prob.states_all_section(0)
    y = prob.states_all_section(1)
    v = prob.states_all_section(2)
    theta = prob.controls_all_section(0)
    tf = prob.time_final(-1)

    result = Condition()
    # lower bounds
    result.lower_bound(x, 0)
    result.lower_bound(y, 0)
    result.lower_bound(theta, 0)
    # upper bounds
    result.upper_bound(theta, np.pi)
    result.upper_bound(x, obj.l)

    return result()
Exemple #3
0
def equality(prob, obj):
    h = prob.states_all_section(0)
    v = prob.states_all_section(1)
    m = prob.states_all_section(2)
    T = prob.controls_all_section(0)
    tf = prob.time_final(-1)

    result = Condition()

    # event condition
    result.equal(h[0], obj.H0)
    result.equal(v[0], obj.V0)
    result.equal(m[0], obj.M0)
    result.equal(v[-1], 0.0)
    result.equal(m[-1], obj.Mf)

    return result()
def equality(prob, obj):
    x = prob.states_all_section(0)
    y = prob.states_all_section(1)
    v = prob.states_all_section(2)
    theta = prob.controls_all_section(0)
    tf = prob.time_final(-1)

    result = Condition()

    # event condition
    result.equal(x[0], 0.0)
    result.equal(y[0], 0.0)
    result.equal(v[0], 0.0)
    result.equal(x[-1], obj.l)
    result.equal(y[-1], 0.0)
    # result.equal(v[-1], 0.0)

    return result()
def equality(prob, obj):
    u = prob.states_all_section(0)
    v = prob.states_all_section(1)
    x = prob.states_all_section(2)
    y = prob.states_all_section(3)
    beta = prob.controls_all_section(0)
    tf = prob.time_final(-1)

    result = Condition()

    # event condition
    result.equal(u[0], 0.0)
    result.equal(v[0], 0.0)
    result.equal(x[0], 0.0)
    result.equal(y[0], 0.0)
    result.equal(u[-1], 1.0)
    result.equal(v[-1], 0.0)
    result.equal(y[-1], 1.0)

    return result()
def equality(prob, obj):
    r   = prob.states_all_section(0)
    vr  = prob.states_all_section(1)
    vt  = prob.states_all_section(2)
    ur1 = prob.controls_all_section(0)
    ur2 = prob.controls_all_section(1)
    ut1 = prob.controls_all_section(2)
    ut2 = prob.controls_all_section(3)
    tf  = prob.time_final(-1)

    result = Condition()

    # event condition
    result.equal(r[0], obj.r0)
    result.equal(vr[0], obj.vr0)
    result.equal(vt[0], obj.vt0)
    result.equal(r[-1], obj.rf)
    result.equal(vr[-1], obj.vrf)
    result.equal(vt[-1], obj.vtf)

    return result()
    def _og_equality(self, prob, obj):
        """ define the equality conditions to be met. in theory the user should be able to provide/modify this"""

        result = Condition()

        for i in range(5):
            result.equal(prob.states_all_section(i)[0], obj.s_0[i]), #r, v, m = [r,v,m](0)

        for i in range(4):
            result.equal(prob.states_all_section(i)[-1], 0.) #r, v = 0

        return result()
Exemple #8
0
def inequality(prob, obj):
    x = prob.states_all_section(0)
    y = prob.states_all_section(1)
    v = prob.states_all_section(2)
    theta = prob.controls_all_section(0)
    tf = prob.time_final(-1)

    result = Condition()

    # lower bounds
    result.lower_bound(tf, 0.1)
    result.lower_bound(y, 0)
    result.lower_bound(theta, 0)

    # upper bounds
    # result.upper_bound(theta, np.pi/2)
    # result.upper_bound(y, x * np.tan(obj.theta0) + obj.h)

    return result()
def inequality(prob, obj):
    u = prob.states_all_section(0)
    v = prob.states_all_section(1)
    x = prob.states_all_section(2)
    y = prob.states_all_section(3)
    beta = prob.controls_all_section(0)
    tf = prob.time_final(-1)

    result = Condition()

    # lower bounds
    result.lower_bound(beta, -np.pi / 2)

    # upper bounds
    result.upper_bound(beta, np.pi / 2)

    return result()
def inequality(prob, obj):
    R = prob.states_all_section(0)
    v = prob.states_all_section(1)
    m = prob.states_all_section(2)
    T = prob.controls_all_section(0)
    ts0 = prob.time_final(0)
    tf = prob.time_final(-1)

    result = Condition()

    # lower bounds
    result.lower_bound(R, obj.Re)
    result.lower_bound(v, 0.0)
    result.lower_bound(m, obj.M0_2nd * obj.Mc)
    result.lower_bound(T, 0.0)
    result.lower_bound(ts0, 50)
    result.lower_bound(tf, 50)

    # upper bounds
    result.upper_bound(m, obj.M0)
    result.upper_bound(T, obj.max_thrust * obj.M0 * obj.g0)

    return result()
def equality(prob, obj):
    R = prob.states_all_section(0)
    v = prob.states_all_section(1)
    m = prob.states_all_section(2)
    T = prob.controls_all_section(0)
    tf = prob.time_final(-1)

    result = Condition()

    # event condition
    result.equal(R[0], obj.Re)
    result.equal(v[0], 0.0)
    result.equal(m[0], obj.M0)
    result.equal(v[-1], 0.0)
    result.equal(m[-1], obj.M0_2nd * obj.Mc)

    # knotting condition
    R1 = prob.states(0, 0)
    v1 = prob.states(1, 0)
    m1 = prob.states(2, 0)
    R2 = prob.states(0, 1)
    v2 = prob.states(1, 1)
    m2 = prob.states(2, 1)
    result.equal(R1[-1], R2[0])
    result.equal(v1[-1], v2[0])
    result.equal(m1[-1], m2[0] - 1200)

    return result()
def cost_derivative(prob, obj):
    jac = Condition(prob.number_of_variables)
    index_R_end = prob.index_states(0, 0, -1)
    jac.change_value(index_R_end, -1)
    return jac()
Exemple #13
0
def inequality(prob, obj):
    R = prob.states_all_section(0)
    theta = prob.states_all_section(1)
    Vr = prob.states_all_section(2)
    Vt = prob.states_all_section(3)
    m = prob.states_all_section(4)
    Tr = prob.controls_all_section(0)
    Tt = prob.controls_all_section(1)
    tf = prob.time_final(-1)

    R0 = prob.states(0, 0)
    R1 = prob.states(0, 1)
    theta0 = prob.states(1, 0)
    theta1 = prob.states(1, 1)
    Vr0 = prob.states(2, 0)
    Vr1 = prob.states(2, 1)
    Vt0 = prob.states(3, 0)
    Vt1 = prob.states(3, 1)
    m0 = prob.states(4, 0)
    m1 = prob.states(4, 1)
    Tr0 = prob.controls(0, 0)
    Tr1 = prob.controls(0, 1)
    Tt0 = prob.controls(1, 0)
    Tt1 = prob.controls(1, 1)

    rho = obj.airDensity(R - obj.Re)
    Mach = np.sqrt(Vr**2 + Vt**2) / obj.airSound(R - obj.Re)
    Cd = obj.Cd(Mach)
    Dr0 = 0.5 * rho * Vr * np.sqrt(Vr**2 + Vt**2) * Cd * obj.A[0]  # [N]
    Dt0 = 0.5 * rho * Vt * np.sqrt(Vr**2 + Vt**2) * Cd * obj.A[0]  # [N]
    Dr1 = 0.5 * rho * Vr * np.sqrt(Vr**2 + Vt**2) * Cd * obj.A[1]  # [N]
    Dt1 = 0.5 * rho * Vt * np.sqrt(Vr**2 + Vt**2) * Cd * obj.A[1]  # [N]
    g = obj.g0 * (obj.Re / R)**2  # [m/s2]

    # dynamic pressure
    q = 0.5 * rho * (Vr**2 + Vt**2)  # [Pa]
    # accelaration
    a_r0 = (Tr - Dr0) / m
    a_t0 = (Tt - Dt0) / m
    a_mag0 = np.sqrt(a_r0**2 + a_t0**2)  # [m/s2]
    a_r1 = (Tr - Dr1) / m
    a_t1 = (Tt - Dt1) / m
    a_mag1 = np.sqrt(a_r1**2 + a_t1**2)  # [m/s2]
    # Thrust
    T0 = np.sqrt(Tr0**2 + Tt0**2)
    T1 = np.sqrt(Tr1**2 + Tt1**2)
    dThrust0 = (obj.airPressure(obj.H0) -
                obj.airPressure(R0 - obj.Re)) * obj.Ae[0]
    dThrust1 = obj.airPressure(R1 - obj.Re) * obj.Ae[1]

    result = Condition()

    # lower bounds
    result.lower_bound(R, obj.Re, unit=prob.unit_states[0][0])  # 地表以下
    result.lower_bound(m0,
                       obj.Mdry[0] + obj.M0[1],
                       unit=prob.unit_states[0][4])  # 乾燥質量以下
    result.lower_bound(m1, obj.Mdry[1], unit=prob.unit_states[0][4])
    result.lower_bound(Tr, -obj.ThrustMax[1], unit=prob.unit_controls[0][0])
    result.lower_bound(Tt, -obj.ThrustMax[1], unit=prob.unit_controls[0][0])

    # upper bounds
    result.upper_bound(m0, obj.Minit, unit=prob.unit_states[0][4])  # 初期質量以上
    result.upper_bound(m1, obj.M0[1], unit=prob.unit_states[0][4])
    result.upper_bound(Tr0,
                       obj.ThrustMax[0] + dThrust0,
                       unit=prob.unit_controls[0][0])
    result.upper_bound(Tt0,
                       obj.ThrustMax[0] + dThrust0,
                       unit=prob.unit_controls[0][0])
    result.upper_bound(T0,
                       obj.ThrustMax[0] + dThrust0,
                       unit=prob.unit_controls[0][0])
    result.upper_bound(Tr1,
                       obj.ThrustMax[1] + dThrust1,
                       unit=prob.unit_controls[0][0])
    result.upper_bound(Tt1,
                       obj.ThrustMax[1] + dThrust1,
                       unit=prob.unit_controls[0][0])
    result.upper_bound(T1,
                       obj.ThrustMax[1] + dThrust1,
                       unit=prob.unit_controls[0][0])
    result.upper_bound(q, obj.MaxQ, unit=prob.unit_states[0][0])
    result.upper_bound(a_mag0, obj.MaxG * obj.g0)
    result.upper_bound(a_mag1, obj.MaxG * obj.g0)

    return result()
Exemple #14
0
def equality(prob, obj):
    R = prob.states_all_section(0)
    theta = prob.states_all_section(1)
    Vr = prob.states_all_section(2)
    Vt = prob.states_all_section(3)
    m = prob.states_all_section(4)
    Tr = prob.controls_all_section(0)
    Tt = prob.controls_all_section(1)
    tf = prob.time_final(-1)

    R0 = prob.states(0, 0)
    R1 = prob.states(0, 1)
    theta0 = prob.states(1, 0)
    theta1 = prob.states(1, 1)
    Vr0 = prob.states(2, 0)
    Vr1 = prob.states(2, 1)
    Vt0 = prob.states(3, 0)
    Vt1 = prob.states(3, 1)
    m0 = prob.states(4, 0)
    m1 = prob.states(4, 1)
    Tr0 = prob.controls(0, 0)
    Tr1 = prob.controls(0, 1)
    Tt0 = prob.controls(1, 0)
    Tt1 = prob.controls(1, 1)

    unit_R = prob.unit_states[0][0]
    unit_V = prob.unit_states[0][2]
    unit_m = prob.unit_states[0][4]

    result = Condition()

    # event condition
    result.equal(R0[0], obj.Re + obj.H0, unit=unit_R)  # 初期地表
    result.equal(theta0[0], 0.0)
    result.equal(Vr0[0], 0.0, unit=unit_V)
    result.equal(Vt0[0], obj.V0, unit=unit_V)
    result.equal(m0[0], obj.Minit,
                 unit=unit_m)  # (1st stage and 2nd stage and Payload) initial

    # knotting condition
    result.equal(m1[0], obj.M0[1],
                 unit=unit_m)  # (2nd stage + Payload) initial
    result.equal(R1[0], R0[-1], unit=unit_R)
    result.equal(theta1[0], theta0[-1])
    result.equal(Vr1[0], Vr0[-1], unit=unit_V)
    result.equal(Vt1[0], Vt0[-1], unit=unit_V)

    # Target Condition
    result.equal(R1[-1], obj.Rtarget, unit=unit_R)  # Radius
    result.equal(Vr[-1], 0.0, unit=unit_V)  # Radius Velocity
    result.equal(Vt[-1], obj.Vtarget, unit=unit_V)

    return result()
Exemple #15
0
    def _og_inequality(self, prob, obj):

        """ define inequality conditions """

        s = [prob.states_all_section(i) for i in range(5)]



        result = Condition()

        u_m = prob.controls(0, 0)
        u_a = prob.controls(1, 0)

        result.lower_bound(u_m, 0)
        result.upper_bound(u_m, 1)
        result.lower_bound(u_a, (-np.pi/2)) #thrust force to the left
        result.upper_bound(u_a, (+np.pi/2)) #thrust force to the right

        #bound states
        for i in range(5):
            result.lower_bound(s[i], obj.ranges[i][0])
            result.upper_bound(s[i], obj.ranges[i][1])

        #cone constraint
        result.lower_bound(s[1], 1.*s[0]) # z > (1/tan(th)) * x

        return result()
def equality(prob, obj):
    R = prob.states_all_section(0)
    theta = prob.states_all_section(1)
    Vr = prob.states_all_section(2)
    Vt = prob.states_all_section(3)
    m = prob.states_all_section(4)
    Tr = prob.controls_all_section(0)
    Tt = prob.controls_all_section(1)
    tf = prob.time_final(-1)

    result = Condition()

    # event condition
    result.equal(R[0], obj.Re, unit=prob.unit_states[0][0])
    result.equal(theta[0], 0.0, unit=prob.unit_states[0][1])
    result.equal(Vr[0], 0.0, unit=prob.unit_states[0][2])
    result.equal(Vt[0], 0.0, unit=prob.unit_states[0][3])
    result.equal(m[0], obj.M0, unit=prob.unit_states[0][4])
    result.equal(R[-1], obj.Rtarget, unit=prob.unit_states[0][1])
    result.equal(Vr[-1], 0.0, unit=prob.unit_states[0][2])
    result.equal(Vt[-1], obj.Vtarget, unit=prob.unit_states[0][3])

    return result()
def inequality(prob, obj):
    R = prob.states_all_section(0)
    theta = prob.states_all_section(1)
    Vr = prob.states_all_section(2)
    Vt = prob.states_all_section(3)
    m = prob.states_all_section(4)
    Tr = prob.controls_all_section(0)
    Tt = prob.controls_all_section(1)
    tf = prob.time_final(-1)

    rho = obj.air_density(R - obj.Re)
    Dr = 0.5 * rho * Vr * np.sqrt(Vr**2 + Vt**2) \
        * obj.Cd * obj.A  # [N]
    Dt = 0.5 * rho * Vt * np.sqrt(Vr**2 + Vt**2) \
        * obj.Cd * obj.A  # [N]
    g = obj.g0 * (obj.Re / R)**2  # [m/s2]

    # dynamic pressure
    q = 0.5 * rho * (Vr**2 + Vt**2)  # [Pa]
    # accelaration
    a_r = (Tr - Dr) / m
    a_t = (Tt - Dt) / m
    a_mag = np.sqrt(a_r**2 + a_t**2)  # [m/s2]
    # Thrust
    T = np.sqrt(Tr**2 + Tt**2)

    result = Condition()

    # lower bounds
    result.lower_bound(R, obj.Re, unit=prob.unit_states[0][0])
    # result.lower_bound(Vr, 0.0, unit=prob.unit_states[0][2])
    # result.lower_bound(Vt, 0.0, unit=prob.unit_states[0][3])
    result.lower_bound(m[1:], (obj.M0 - obj.Mp), unit=prob.unit_states[0][4])
    result.lower_bound(Tr, 0.0, unit=prob.unit_controls[0][0])
    # result.lower_bound(Tt, obj.Tmax / obj.unit_T, unit=prob.unit_controls[0][0])
    result.lower_bound(Tt, 0.0, unit=prob.unit_controls[0][0])

    # upper bounds
    result.upper_bound(m, obj.M0, unit=prob.unit_states[0][4])
    result.upper_bound(Tr, obj.Tmax, unit=prob.unit_controls[0][0])
    result.upper_bound(Tt, obj.Tmax, unit=prob.unit_controls[0][0])
    result.upper_bound(T, obj.Tmax, unit=prob.unit_controls[0][0])
    # result.upper_bound(q, obj.MaxQ, unit = prob.unit_states[0][0])
    result.upper_bound(a_mag, obj.MaxG * obj.g0)

    return result()
Exemple #18
0
def cost_derivative(prob, obj):
    jac = Condition(prob.number_of_variables)
    # index_tf = prob.index_time_final(0)
    index_tf = prob.index_time_final(-1)
    jac.change_value(index_tf, 1)
    return jac()
Exemple #19
0
def inequality(prob, obj):
    h = prob.states_all_section(0)
    v = prob.states_all_section(1)
    m = prob.states_all_section(2)
    T = prob.controls_all_section(0)
    tf = prob.time_final(-1)

    result = Condition()
    # lower bounds
    result.lower_bound(h, obj.H0)
    result.lower_bound(v, 0.0)
    result.lower_bound(m, obj.Mf)
    result.lower_bound(T, 0.0)
    result.lower_bound(tf, 0.1)
    # upper bounds
    result.upper_bound(m, obj.M0)
    result.upper_bound(T, obj.T_max)

    return result()
def inequality(prob, obj):
    r   = prob.states_all_section(0)
    vr  = prob.states_all_section(1)
    vt  = prob.states_all_section(2)
    ur1 = prob.controls_all_section(0)
    ur2 = prob.controls_all_section(1)
    ut1 = prob.controls_all_section(2)
    ut2 = prob.controls_all_section(3)
    tf  = prob.time_final(-1)

    result = Condition()

    # lower bounds
    result.lower_bound(r, obj.r0)
    result.lower_bound(ur1, 0.0)
    result.lower_bound(ut1, 0.0)
    result.lower_bound(ur2, 0.0)
    result.lower_bound(ut2, 0.0)
    result.lower_bound(tf, 0.0)

    # upper bounds
    result.upper_bound(r, obj.rf)
    result.upper_bound(ur1, obj.u_max)
    result.upper_bound(ut1, obj.u_max)
    result.upper_bound(ur2, obj.u_max)
    result.upper_bound(ut2, obj.u_max)
    result.upper_bound(tf, obj.tf_max)

    return result()