Exemple #1
0
    def test_curves_from_results(self, init):
        res = Results()
        ytrue, probs = self.data.T
        res.actual = ytrue.astype(float)
        res.probabilities = np.vstack((1 - probs, probs)).T.reshape(1, -1, 2)
        Curves.from_results(res)
        cytrue, cprobs = init.call_args[0]
        np.testing.assert_equal(cytrue, ytrue)
        np.testing.assert_equal(cprobs, probs)

        Curves.from_results(res, target_class=0)
        cytrue, cprobs = init.call_args[0]
        np.testing.assert_equal(cytrue, 1 - ytrue)
        np.testing.assert_equal(cprobs, 1 - probs)

        res.actual = ytrue.astype(float)
        res.probabilities = np.random.random((2, 19, 2))
        res.probabilities[1] = np.vstack((1 - probs, probs)).T

        Curves.from_results(res, model_index=1)
        cytrue, cprobs = init.call_args[0]
        np.testing.assert_equal(cytrue, ytrue)
        np.testing.assert_equal(cprobs, probs)

        self.assertRaises(ValueError, Curves.from_results, res)

        ytrue[ytrue == 0] = 2 * (np.arange(10) % 2)
        res.actual = ytrue.astype(float)
        res.probabilities = np.random.random((2, 19, 3))
        res.probabilities[1] = np.vstack(
            ((1 - probs) / 3, probs, (1 - probs) * 2 / 3)).T

        Curves.from_results(res, model_index=1, target_class=1)
        cytrue, cprobs = init.call_args[0]
        np.testing.assert_equal(cytrue, ytrue == 1)
        np.testing.assert_equal(cprobs, probs)

        Curves.from_results(res, model_index=1, target_class=0)
        cytrue, cprobs = init.call_args[0]
        np.testing.assert_equal(cytrue, ytrue == 0)
        np.testing.assert_equal(cprobs, (1 - probs) / 3)

        Curves.from_results(res, model_index=1, target_class=2)
        cytrue, cprobs = init.call_args[0]
        np.testing.assert_equal(cytrue, ytrue == 2)
        np.testing.assert_equal(cprobs, (1 - probs) * 2 / 3)

        self.assertRaises(ValueError, Curves.from_results, res, model_index=1)
 def test_empty_results(self):
     """Test on empty results."""
     res = Results(data=self.iris[:0], store_data=True)
     res.row_indices = np.array([], dtype=int)
     res.actual = np.array([])
     res.predicted = np.array([[]])
     res.probabilities = np.zeros((1, 0, 3))
     self.send_signal(self.widget.Inputs.evaluation_results, res)
     self.widget.select_correct()
     self.widget.select_wrong()
 def test_empty_results(self):
     """Test on empty results."""
     res = Results(data=self.iris[:0], store_data=True)
     res.row_indices = np.array([], dtype=int)
     res.actual = np.array([])
     res.predicted = np.array([[]])
     res.probabilities = np.zeros((1, 0, 3))
     self.send_signal(self.widget.Inputs.evaluation_results, res)
     self.widget.select_correct()
     self.widget.select_wrong()
 def test_nan_results(self):
     """Test on results with nan values in actual/predicted"""
     res = Results(data=self.iris, nmethods=2, store_data=True)
     res.row_indices = np.array([0, 50, 100], dtype=int)
     res.actual = np.array([0., np.nan, 2.])
     res.predicted = np.array([[np.nan, 1, 2], [np.nan, np.nan, np.nan]])
     res.probabilities = np.zeros((1, 3, 3))
     self.send_signal(self.widget.Inputs.evaluation_results, res)
     self.assertTrue(self.widget.Error.invalid_values.is_shown())
     self.send_signal(self.widget.Inputs.evaluation_results, None)
     self.assertFalse(self.widget.Error.invalid_values.is_shown())
Exemple #5
0
 def test_curves_from_results_nans(self, init):
     res = Results()
     ytrue, probs = self.data.T
     ytrue[0] = np.nan
     probs[-1] = np.nan
     res.actual = ytrue.astype(float)
     res.probabilities = np.vstack((1 - probs, probs)).T.reshape(1, -1, 2)
     Curves.from_results(res)
     cytrue, cprobs = init.call_args[0]
     np.testing.assert_equal(cytrue, ytrue[1:-1])
     np.testing.assert_equal(cprobs, probs[1:-1])
 def test_nan_results(self):
     """Test on results with nan values in actual/predicted"""
     res = Results(data=self.iris, nmethods=2, store_data=True)
     res.row_indices = np.array([0, 50, 100], dtype=int)
     res.actual = np.array([0., np.nan, 2.])
     res.predicted = np.array([[np.nan, 1, 2],
                               [np.nan, np.nan, np.nan]])
     res.probabilities = np.zeros((1, 3, 3))
     self.send_signal(self.widget.Inputs.evaluation_results, res)
     self.assertTrue(self.widget.Error.invalid_values.is_shown())
     self.send_signal(self.widget.Inputs.evaluation_results, None)
     self.assertFalse(self.widget.Error.invalid_values.is_shown())