def test_sparse_pps(self): with self.data.unlocked(): self.data.X = csr_matrix(self.data.X) out = AdaptiveNormalize()(self.data) true_out = Scale(center=Scale.NoCentering, scale=Scale.Span)(self.data) np.testing.assert_array_equal(out, true_out) self.data = self.data.X.toarray()
class OneClassSVMLearner(_OutlierLearner): name = "One class SVM" __wraps__ = OneClassSVM preprocessors = SklLearner.preprocessors + [AdaptiveNormalize()] def __init__(self, kernel='rbf', degree=3, gamma="auto", coef0=0.0, tol=0.001, nu=0.5, shrinking=True, cache_size=200, max_iter=-1, preprocessors=None): super().__init__(preprocessors=preprocessors) self.params = vars()
def test_dense_pps(self): true_out = Normalize()(self.data) out = AdaptiveNormalize()(self.data) np.testing.assert_array_equal(out, true_out)
import sklearn.svm as skl_svm from Orange.classification import SklLearner from Orange.preprocess import AdaptiveNormalize __all__ = ["SVMLearner", "LinearSVMLearner", "NuSVMLearner"] svm_pps = SklLearner.preprocessors + [AdaptiveNormalize()] class SVMLearner(SklLearner): __wraps__ = skl_svm.SVC preprocessors = svm_pps def __init__(self, C=1.0, kernel='rbf', degree=3, gamma="auto", coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, max_iter=-1, preprocessors=None): super().__init__(preprocessors=preprocessors) self.params = vars() class LinearSVMLearner(SklLearner):