Exemple #1
0
        def update_loop(X, max_iter, step, init):
            """
            return an iterator over successive improved MDS point embeddings.
            """
            # NOTE: this code MUST NOT call into QApplication.processEvents
            done = False
            iterations_done = 0
            oldstress = np.finfo(np.float).max
            init_type = "PCA" if self.initialization == OWMDS.PCA else "random"

            while not done:
                step_iter = min(max_iter - iterations_done, step)
                mds = MDS(dissimilarity="precomputed",
                          n_components=2,
                          n_init=1,
                          max_iter=step_iter,
                          init_type=init_type,
                          init_data=init)

                mdsfit = mds(X)
                iterations_done += step_iter

                embedding, stress = mdsfit.embedding_, mdsfit.stress_
                stress /= np.sqrt(np.sum(embedding**2, axis=1)).sum()

                if iterations_done >= max_iter:
                    done = True
                elif (oldstress - stress) < mds.params["eps"]:
                    done = True
                init = embedding
                oldstress = stress

                yield embedding, mdsfit.stress_, iterations_done / max_iter
Exemple #2
0
def run_mds(matrix: DistMatrix, max_iter: int, step_size: int, init_type: int,
            embedding: np.ndarray, state: TaskState):
    res = Result(embedding=embedding)

    iterations_done = 0
    init = embedding
    state.set_status("Running...")
    oldstress = np.finfo(np.float).max

    while True:
        step_iter = min(max_iter - iterations_done, step_size)
        mds = MDS(
            dissimilarity="precomputed", n_components=2,
            n_init=1, max_iter=step_iter,
            init_type=init_type, init_data=init
        )

        mdsfit = mds(matrix)
        iterations_done += step_iter

        embedding, stress = mdsfit.embedding_, mdsfit.stress_
        emb_norm = np.sqrt(np.sum(embedding ** 2, axis=1)).sum()
        if emb_norm > 0:
            stress /= emb_norm

        res.embedding = embedding
        state.set_partial_result(res)
        state.set_progress_value(100 * iterations_done / max_iter)
        if iterations_done >= max_iter or stress == 0 or \
                (oldstress - stress) < mds.params["eps"]:
            return res
        init = embedding
        oldstress = stress
        if state.is_interruption_requested():
            return res
    def layout_mds(self, steps, distances, progress_callback=None, opt_from_curr=False):
        """Position the network components according to similarities among
        them.

        """
        nodes = self.nodes()

        if distances == None or distances.dim != len(nodes):
            self.information('invalid or no distance matrix')
            return 1

        p = self.plot()

        minStressDelta = 0
        mdsRefresh = int(steps / 20)

        self.mdsStep = 1
        self.stopMDS = False

        #~ distances.matrixType = core.SymMatrix.Symmetric
        mds = MDS()(distances)
        mds.optimize(10, projection.mds.SgnRelStress, 0)
        rect = self.data_rect()
        w_fr = rect.width()
        h_fr = rect.height()
        d_fr = math.sqrt(w_fr ** 2 + h_fr ** 2)

        x_mds, y_mds = zip(*mds.points)
        w_mds = max(x_mds) - min(x_mds)
        h_mds = max(y_mds) - min(y_mds)
        d_mds = math.sqrt(w_mds ** 2 + h_mds ** 2)

        self.set_node_coordinates(dict(
           (n, (nodes[n].x() * d_mds / d_fr, nodes[n].y() * d_mds / d_fr)) for n in nodes))

        p.update_graph_layout()
        qApp.processEvents()

        if opt_from_curr:
            for i, u in enumerate(sorted(nodes.keys())):
                mds.points[i][0] = nodes[u].x()
                mds.points[i][1] = nodes[u].y()
        else:
            mds.Torgerson()

        mds.optimize(steps, projection.mds.SgnRelStress, minStressDelta,
                     progressCallback=
                         lambda a,
                                b=None,
                                mds=mds,
                                mdsRefresh=mdsRefresh,
                                progress_callback=progress_callback:
                                    self.mds_callback(a, b, mds, mdsRefresh, progress_callback))

        self.mds_callback(mds.avgStress, 0, mds, mdsRefresh, progress_callback)

        if progress_callback is not None:
            progress_callback(mds.avgStress, self.mdsStep)

        return 0
Exemple #4
0
    def _initialize(self):
        matrix_existed = self.effective_matrix is not None
        effective_matrix = self.effective_matrix
        self._invalidated = True
        self.data = None
        self.effective_matrix = None
        self.closeContext()
        self.clear_messages()

        # if no data nor matrix is present reset plot
        if self.signal_data is None and self.matrix is None:
            self.clear()
            self.init_attr_values()
            return

        if self.signal_data is not None and self.matrix is not None and \
                len(self.signal_data) != len(self.matrix):
            self.Error.mismatching_dimensions()
            self.clear()
            self.init_attr_values()
            return

        if self.signal_data is not None:
            self.data = self.signal_data
        elif self.matrix_data is not None:
            self.data = self.matrix_data

        if self.matrix is not None:
            self.effective_matrix = self.matrix
            if self.matrix.axis == 0 and self.data is not None \
                    and self.data is self.matrix_data:
                names = [[attr.name] for attr in self.data.domain.attributes]
                domain = Domain([], metas=[StringVariable("labels")])
                self.data = Table.from_list(domain, names)
        elif self.data.domain.attributes:
            preprocessed_data = MDS().preprocess(self.data)
            self.effective_matrix = Euclidean(preprocessed_data)
        else:
            self.Error.no_attributes()
            self.clear()
            self.init_attr_values()
            return

        self.init_attr_values()
        self.openContext(self.data)
        self._invalidated = not (
            matrix_existed and self.effective_matrix is not None
            and array_equal(effective_matrix, self.effective_matrix))
        if self._invalidated:
            self.clear()
        self.graph.set_effective_matrix(self.effective_matrix)
Exemple #5
0
    def _initialize(self):
        matrix_existed = self.effective_matrix is not None
        effective_matrix = self.effective_matrix
        self.__invalidated = True
        self.data = None
        self.effective_matrix = None
        self.closeContext()
        self.clear_messages()

        # if no data nor matrix is present reset plot
        if self.signal_data is None and self.matrix is None:
            self.clear()
            self.init_attr_values()
            return

        if self.signal_data is not None and self.matrix is not None and \
                len(self.signal_data) != len(self.matrix):
            self.Error.mismatching_dimensions()
            self.clear()
            self.init_attr_values()
            return

        if self.signal_data is not None:
            self.data = self.signal_data
        elif self.matrix_data is not None:
            self.data = self.matrix_data

        if self.matrix is not None:
            self.effective_matrix = self.matrix
            if self.matrix.axis == 0 and self.data is self.matrix_data:
                self.data = None
        elif self.data.domain.attributes:
            preprocessed_data = MDS().preprocess(self.data)
            self.effective_matrix = Euclidean(preprocessed_data)
        else:
            self.Error.no_attributes()
            self.clear()
            self.init_attr_values()
            return

        self.init_attr_values()
        self.openContext(self.data)
        self.__invalidated = not (matrix_existed and
                                  self.effective_matrix is not None and
                                  np.array_equal(effective_matrix,
                                                 self.effective_matrix))
        if self.__invalidated:
            self.clear()
        self.graph.set_effective_matrix(self.effective_matrix)
Exemple #6
0
    def _initialize(self):
        # clear everything
        self.closeContext()
        self._clear()
        self.Error.clear()
        self.effective_matrix = None
        self.embedding = None

        # if no data nor matrix is present reset plot
        if self.signal_data is None and self.matrix_data is None:
            self.data = None
            self.init_attr_values()
            return

        if self.signal_data is not None and self.matrix is not None and \
                len(self.signal_data) != len(self.matrix):
            self.Error.mismatching_dimensions()
            self._update_plot()
            return

        if self.signal_data is not None:
            self.data = self.signal_data
        elif self.matrix_data is not None:
            self.data = self.matrix_data

        if self.matrix is not None:
            self.effective_matrix = self.matrix
            if self.matrix.axis == 0 and self.data is self.matrix_data:
                self.data = None
        elif self.data.domain.attributes:
            preprocessed_data = MDS().preprocess(self.data)
            self.effective_matrix = Euclidean(preprocessed_data)
        else:
            self.Error.no_attributes()
            return

        self.init_attr_values()
        self.openContext(self.data)
        self.graph.set_effective_matrix(self.effective_matrix)
Exemple #7
0
        def update_loop(X, max_iter, step, init):
            """
            return an iterator over successive improved MDS point embeddings.
            """
            # NOTE: this code MUST NOT call into QApplication.processEvents
            done = False
            iterations_done = 0
            oldstress = np.finfo(np.float).max
            init_type = "PCA" if self.initialization == OWMDS.PCA else "random"

            while not done:
                step_iter = min(max_iter - iterations_done, step)
                mds = MDS(dissimilarity="precomputed",
                          n_components=2,
                          n_init=1,
                          max_iter=step_iter,
                          init_type=init_type,
                          init_data=init)

                with warnings.catch_warnings():
                    warnings.filterwarnings("ignore", ".*double_scalars.*",
                                            RuntimeWarning)
                    mdsfit = mds(X)
                iterations_done += step_iter

                embedding, stress = mdsfit.embedding_, mdsfit.stress_
                emb_norm = np.sqrt(np.sum(embedding**2, axis=1)).sum()
                if emb_norm > 0:
                    stress /= emb_norm

                if iterations_done >= max_iter \
                        or (oldstress - stress) < mds.params["eps"] \
                        or stress == 0:
                    done = True
                init = embedding
                oldstress = stress

                yield embedding, mdsfit.stress_, iterations_done / max_iter
    def layout_fragviz(self, steps, distances, graph, progress_callback=None, opt_from_curr=False):
        """Position the network components according to similarities among
        them.

        """

        if distances == None or graph == None or distances.dim != graph.number_of_nodes():
            self.information('invalid or no distance matrix')
            return 1

        p = self.plot()
        edges = self.edges()
        nodes = self.nodes()

        avgLinkage = True
        rotationOnly = False
        minStressDelta = 0
        mdsRefresh = 10#int(steps / 20)

        self.mdsStep = 1
        self.stopMDS = False

        nodes_inds = dict((n, i) for i, n in enumerate(sorted(graph.nodes_iter())))
        inds_nodes = dict((i, n) for i, n in enumerate(sorted(graph.nodes_iter())))

        graph_components = nx.algorithms.connected_components(graph)
        matrix_components = [[nodes_inds[n] for n in c] for c in graph_components]

        #~ distances.matrixType = core.SymMatrix.Symmetric

        # scale net coordinates
        if avgLinkage:
            distances = distances.avgLinkage(matrix_components)

        # if only one component
        if distances.dim == 1:
            return 0

        mds = MDS()(distances)
        rect = self.data_rect()
        w_fr = rect.width()
        h_fr = rect.height()
        d_fr = math.sqrt(w_fr ** 2 + h_fr ** 2)

        x_mds, y_mds = zip(*mds.points)
        w_mds = max(x_mds) - min(x_mds)
        h_mds = max(y_mds) - min(y_mds)
        d_mds = math.sqrt(w_mds ** 2 + h_mds ** 2)

        # if only one component
        if d_mds == 0 or d_fr == 0:
            d_mds = 1
            d_fr = 1

        self.set_node_coordinates(dict((key, (node.x() * d_mds / d_fr, node.y() * d_mds / d_fr)) \
                                       for key, node in nodes.items()))

        p.update_graph_layout()
        qApp.processEvents()

        if opt_from_curr:
            if avgLinkage:
                for u, c in enumerate(graph_components):
                    x = sum([nodes[n].x() for n in c]) / len(c)
                    y = sum([nodes[n].y() for n in c]) / len(c)
                    mds.points[u][0] = x
                    mds.points[u][1] = y
            else:
                for i, u in enumerate(sorted(nodes.keys())):
                    mds.points[i][0] = nodes[u].x()
                    mds.points[i][1] = nodes[u].y()
        else:
            mds.Torgerson()

        mds.optimize(steps, projection.mds.SgnRelStress, minStressDelta,
                     progressCallback=
                         lambda a, b=None, mds=mds, mdsRefresh=mdsRefresh, graph_comp=graph_components,
                                matrix_comp=matrix_components, progress_callback=progress_callback:
                         self.fragviz_callback(a, b, mds, mdsRefresh, graph_comp, matrix_comp, progress_callback))

        self.fragviz_callback(mds.avgStress, 0, mds, mdsRefresh, graph_components, matrix_components, progress_callback)

        if progress_callback is not None:
            progress_callback(mds.avgStress, self.mdsStep)

        return 0