# Loading data
    print('Loading data...')
    X = np.loadtxt(args["fluorescence"], delimiter=",")
    X = np.asfortranarray(X, dtype=np.float32)
    # pos = np.loadtxt(args["position"], delimiter=",")

    # Should we remove some neurons?
    if "killing" in args:
        if args["network"] in ["normal-3", "normal-4"]:
            X = kill(X, args["network"], args["killing"])
        else:
            raise ValueError("No killing specified for %s" % args["network"])

    # Producing the prediction matrix
    if args["method"] == 'tuned':
        y_pca = make_tuned_inference(X)
    else:
        y_pca = make_simple_inference(X)

    if args["directivity"]:
        print('Using information about directivity...')
        y_directivity = make_prediction_directivity(X)
        # Perform stacking
        score = 0.997 * y_pca + 0.003 * y_directivity
    else:
        score = y_pca

    # Save data
    if "output_dir" in args:
        if not os.path.exists(args["output_dir"]):
            os.makedirs(args["output_dir"])
    print('Loading data...')
    X = np.loadtxt(args["fluorescence"], delimiter=",")
    X = np.asfortranarray(X, dtype=np.float32)
    # pos = np.loadtxt(args["position"], delimiter=",")

    # Should we remove some neurons?
    if "killing" in args:
        if args["network"] in ["normal-3",
                               "normal-4"]:
            X = kill(X, args["network"], args["killing"])
        else:
            raise ValueError("No killing specified for %s" % args["network"])

    # Producing the prediction matrix
    if args["method"] == 'tuned':
        y_pca = make_tuned_inference(X)
    else:
        y_pca = make_simple_inference(X)

    if args["directivity"]:
        print('Using information about directivity...')
        y_directivity = make_prediction_directivity(X)
        # Perform stacking
        score = 0.997 * y_pca + 0.003 * y_directivity
    else:
        score = y_pca

    # Save data
    if "output_dir" in args:
        if not os.path.exists(args["output_dir"]):
            os.makedirs(args["output_dir"])