# Loading data print('Loading data...') X = np.loadtxt(args["fluorescence"], delimiter=",") X = np.asfortranarray(X, dtype=np.float32) # pos = np.loadtxt(args["position"], delimiter=",") # Should we remove some neurons? if "killing" in args: if args["network"] in ["normal-3", "normal-4"]: X = kill(X, args["network"], args["killing"]) else: raise ValueError("No killing specified for %s" % args["network"]) # Producing the prediction matrix if args["method"] == 'tuned': y_pca = make_tuned_inference(X) else: y_pca = make_simple_inference(X) if args["directivity"]: print('Using information about directivity...') y_directivity = make_prediction_directivity(X) # Perform stacking score = 0.997 * y_pca + 0.003 * y_directivity else: score = y_pca # Save data if "output_dir" in args: if not os.path.exists(args["output_dir"]): os.makedirs(args["output_dir"])
print('Loading data...') X = np.loadtxt(args["fluorescence"], delimiter=",") X = np.asfortranarray(X, dtype=np.float32) # pos = np.loadtxt(args["position"], delimiter=",") # Should we remove some neurons? if "killing" in args: if args["network"] in ["normal-3", "normal-4"]: X = kill(X, args["network"], args["killing"]) else: raise ValueError("No killing specified for %s" % args["network"]) # Producing the prediction matrix if args["method"] == 'tuned': y_pca = make_tuned_inference(X) else: y_pca = make_simple_inference(X) if args["directivity"]: print('Using information about directivity...') y_directivity = make_prediction_directivity(X) # Perform stacking score = 0.997 * y_pca + 0.003 * y_directivity else: score = y_pca # Save data if "output_dir" in args: if not os.path.exists(args["output_dir"]): os.makedirs(args["output_dir"])