from pylab import * from numpy import * from PIL import Image from PCV.localdescriptors import harris from PCV.tools.imtools import imresize """ This is the Harris point matching example in Figure 2-2. """ im1 = array(Image.open("data/crans_1_small.jpg").convert("L")) im2 = array(Image.open("data/crans_2_small.jpg").convert("L")) # resize to make matching faster im1 = imresize(im1, (im1.shape[1] / 2, im1.shape[0] / 2)) im2 = imresize(im2, (im2.shape[1] / 2, im2.shape[0] / 2)) wid = 5 harrisim = harris.compute_harris_response(im1, 5) filtered_coords1 = harris.get_harris_points(harrisim, wid + 1) d1 = harris.get_descriptors(im1, filtered_coords1, wid) harrisim = harris.compute_harris_response(im2, 5) filtered_coords2 = harris.get_harris_points(harrisim, wid + 1) d2 = harris.get_descriptors(im2, filtered_coords2, wid) print 'starting matching' matches = harris.match_twosided(d1, d2) figure() gray()
from pylab import * from numpy import * from PIL import Image from PCV.localdescriptors import harris from PCV.tools.imtools import imresize """ This is the Harris point matching example in Figure 2-2. """ im1 = array(Image.open("../data/crans_1_small.jpg").convert("L")) im2 = array(Image.open("../data/crans_2_small.jpg").convert("L")) # resize to make matching faster im1 = imresize(im1,(im1.shape[1]/2,im1.shape[0]/2)) im2 = imresize(im2,(im2.shape[1]/2,im2.shape[0]/2)) wid = 5 harrisim = harris.compute_harris_response(im1,5) filtered_coords1 = harris.get_harris_points(harrisim,wid+1) d1 = harris.get_descriptors(im1,filtered_coords1,wid) harrisim = harris.compute_harris_response(im2,5) filtered_coords2 = harris.get_harris_points(harrisim,wid+1) d2 = harris.get_descriptors(im2,filtered_coords2,wid) print 'starting matching' matches = harris.match_twosided(d1,d2) figure()
from PCV.localdescriptors import harris from PCV.tools.imtools import imresize """ This is the Harris point matching example in Figure 2-2. """ # Figure 2-2上面的图 im1 = array(Image.open("../data/crans_1_small.jpg").convert("L")) im2 = array(Image.open("../data/crans_2_small.jpg").convert("L")) # Figure 2-2下面的图 # im1 = array(Image.open("../data/sf_view1.jpg").convert("L")) # im2 = array(Image.open("../data/sf_view2.jpg").convert("L")) # resize to make matching faster im1 = imresize(im1, (int(im1.shape[1] / 2), int(im1.shape[0] / 2))) im2 = imresize(im2, (int(im2.shape[1] / 2), int(im2.shape[0] / 2))) wid = 5 harrisim = harris.compute_harris_response(im1, 5) filtered_coords1 = harris.get_harris_points(harrisim, wid + 1) d1 = harris.get_descriptors(im1, filtered_coords1, wid) harrisim = harris.compute_harris_response(im2, 5) filtered_coords2 = harris.get_harris_points(harrisim, wid + 1) d2 = harris.get_descriptors(im2, filtered_coords2, wid) print('starting matching') matches = harris.match_twosided(d1, d2) figure()