Exemple #1
0
from PandaCore.Utils.root import root
from PandaCore.Tools.Misc import *
from PandaCore.Utils.load import *
import PandaAnalysis.T3.job_utilities as utils
from PandaAnalysis.Flat.analysis import *

Load('PandaAnalyzer')
data_dir = getenv('CMSSW_BASE') + '/src/PandaAnalysis/data/'


def fn(input_name, isData, full_path):
    a = wlnhbb(True)
    a.inpath = input_name
    a.outpath = utils.input_to_output(input_name)
    a.datapath = data_dir
    a.isData = isData
    utils.set_year(a, 2017)
    a.processType = utils.classify_sample(full_path, isData)
    if a.processType in {root.pa.kTT, root.pa.kH}:
        a.reclusterGen = True  # only turn on if necessary

    skimmer = root.pa.PandaAnalyzer(a)
    skimmer.AddPresel(root.pa.VHbbSel())
    skimmer.AddPresel(root.pa.TriggerSel())

    return utils.run_PandaAnalyzer(skimmer, isData, a.outpath)


if __name__ == "__main__":
    utils.wrapper(fn)
Exemple #2
0
from PandaCore.Tools.Misc import *
from PandaCore.Utils.load import *
import PandaAnalysis.T3.job_utilities as utils
from PandaAnalysis.Flat.analysis import *

Load('PandaAnalyzer')
data_dir = getenv('CMSSW_BASE') + '/src/PandaAnalysis/data/'


def fn(input_name, isData, full_path):
    # now we instantiate and configure the analyzer
    a = monotop(True)
    a.recalcECF = True 
    a.varyJESTotal = True
    a.mcTriggers = True
    a.inpath = input_name
    a.outpath = utils.input_to_output(input_name)
    a.datapath = data_dir
    a.isData = isData
    utils.set_year(a, 2016)
    a.processType = utils.classify_sample(full_path, isData)	

    skimmer = root.pa.PandaAnalyzer(a)
    skimmer.AddPresel(root.pa.FatJetSel())

    return utils.run_PandaAnalyzer(skimmer, isData, a.outpath)


if __name__ == "__main__":
    utils.wrapper(fn, post_fn=utils.BDTAdder())
Exemple #3
0
    return utils.run_PandaAnalyzer(skimmer, isData, a.outpath)


def post_fn():
    sleep(60)
    do('du -hs output.root 1>&2')
    f = root.TFile.Open('output.root')
    t = f.Get('events')
    logger.debug('post_fn', 'Tree has %i entries' % (t.GetEntries()))

    logger.info('post_fn', 'Creating numpy arrays')
    arr = read_files(['output.root'], branches=None)
    adj = arr['adj']
    x = np.stack([
        arr['node' + f]
        for f in ['Pt', 'Eta', 'Phi', 'E', 'IsFinal', 'IsRoot']
    ],
                 axis=-1)
    jets = np.stack([
        arr['jet' + f]
        for f in ['Tau32', 'Tau21', 'MSD', 'Pt', 'Eta', 'Phi', 'M', 'PdgId']
    ],
                    axis=-1)
    logger.info('post_fn', 'Saving numpy arrays')
    np.savez_compressed('output.npz', adj=adj, x=x, jets=jets)
    do('mv -v output.npz output.root')


if __name__ == "__main__":
    utils.wrapper(fn, post_fn=post_fn)
Exemple #4
0
from PandaCore.Utils.root import root
from PandaCore.Tools.Misc import *
from PandaCore.Utils.load import *
import PandaAnalysis.T3.job_utilities as utils
from PandaAnalysis.Flat.analysis import *

Load('PandaAnalyzer')
data_dir = getenv('CMSSW_BASE') + '/src/PandaAnalysis/data/'


def fn(input_name, isData, full_path):
    a = analysis('jes', varyJES=True, rerunJES=True)
    a.inpath = input_name
    a.outpath = utils.input_to_output(input_name)
    a.datapath = data_dir
    a.isData = isData
    utils.set_year(a, 2016)
    a.processType = utils.classify_sample(full_path, isData)

    skimmer = root.pa.PandaAnalyzer(a)

    return utils.run_PandaAnalyzer(skimmer, isData, a.outpath)


if __name__ == "__main__":
    utils.wrapper(
        fn,
        post_fn=lambda: utils.drop_branches(to_keep=[
            'jotPt*', 'fjPt*', 'mcWeight', 'jotEta', 'npv', 'jotRawPt'
        ]))