Exemple #1
0
def main():

    if len(sys.argv) != 4:
        print("Wrong number of arguments.")
        print("Usage: " + sys.argv[0] + "<input file>" + " <output file>" +
              "method of time integration:either 'euler' or 'verlet'")
        quit()
    else:
        outfile_name = sys.argv[2]
        infile_name = sys.argv[1]

    # Open output file
    outfile = open(outfile_name, "w")

    #read in input file
    infile = open(infile_name, "r")

    #Get the specific constants for the particle from the input file
    #read in first line from input file
    constants = infile.readline()
    #split first line up
    tokens = constants.split(",")

    #set up initial parameters for particles
    D = tokens[0]
    alpha = tokens[2]
    r_e = tokens[1]

    dt = 0.01
    numstep = 20
    time = 0.0

    #set up the initial state of the particles

    p1 = Particle3D.file_read(infile)
    p2 = Particle3D.file_read(infile)

    #create a list of particles p1,p2
    particles = [p1, p2]

    sep_vector = p1.separation(p2)

    #calculate the magnitude of the separation between p1 and p2
    distance = np.linalg.norm(sep_vector)

    #get the total initial energy of the system
    energy = Particle3D.kinetic_energy(p1) + Particle3D.kinetic_energy(
        p2) + pot_energy_morse(distance, D, alpha, r_e)

    #write the initial time, initial separation and initial total energy to the output file
    outfile.write("{0:f} {1:f} {2:12.8f}\n".format(time, distance, energy))

    # Initialise data lists for plotting later
    time_list = []
    distance_list = []
    energy_list = []
Exemple #2
0
def kinetic_energy_dw(Plist):


    no_parts = len(Plist)
    kinetic_energy = np.zeros(no_parts)
    for i in range(no_parts):

        kinetic_energy[i] = Particle3D.kinetic_energy(Plist[i])


    return kinetic_energy
def kinetic_energy_dw(Plist):
    """
    Method to return kinetic energy, which is given by:
    1/2*m*v^2
    :param particlei: Particle3D instance
    :return: kinetic energy of body as a float
    """


    no_parts = len(Plist)
    kinetic_energy = np.zeros(no_parts)
    for i in range(no_parts):

        kinetic_energy[i] = Particle3D.kinetic_energy(Plist[i])

    return kinetic_energy
Exemple #4
0
def main():

    if len(sys.argv) != 4:
        print("Wrong number of arguments.")
        print("Usage: " + sys.argv[0] + "<input file>" + " <output file>" +
              " method of time integration: either euler or verlet")
        quit()
    else:
        outfile_name = sys.argv[2]
        infile_name = sys.argv[1]

    # Open output file
    outfile = open(outfile_name, "w")

    #read in input file
    infile = open(infile_name, "r")

    #Get the specific constants for the particle from the input file
    #read in first line from input file
    constants = infile.readline()
    #split first line up
    tokens = constants.split(",")

    #set up initial parameters for particles
    D = tokens[0]
    alpha = tokens[2]
    r_e = tokens[1]

    dt = 0.01
    numstep = 2000
    time = 0.0

    #set up the initial state of the particles

    p1 = Particle3D.file_read(infile)
    p2 = Particle3D.file_read(infile)

    sep_vector = p1.separation(p2)

    #calculate the magnitude of the separation between p1 and p2
    distance = np.linalg.norm(sep_vector)

    #get the total initial energy of the system
    energy = Particle3D.kinetic_energy(p1) + Particle3D.kinetic_energy(
        p2) + pot_energy_morse(distance, D, alpha, r_e)

    #write the initial time, initial separation and initial total energy to the output file
    outfile.write("{0:f} {1:f} {2:12.8f}\n".format(time, distance, energy))

    tot_time = dt * numstep
    #list to hold timesteps
    dt_list = []
    #list to hold energy fluctuations
    fluc_list = []

    # Start the time integration loop

    for dt in np.linspace(0.001, 0.15, 500):

        # Initialise data lists for plotting later
        time_list = []
        distance_list = []
        energy_list = []

        numstep = int(tot_time / dt)

        for i in range(numstep):
            #use time integration method to get the new separations and new total energy after the time step
            if sys.argv[3] == 'euler':
                new_data = symp_euler(p1, p2, dt, D, alpha, r_e)
            else:
                new_data = v_verlet(p1, p2, dt, D, alpha, r_e)

            #get new separation
            sep = new_data[0]

            #get  new total energy
            new_energy = new_data[1]

            # Output particle information
            outfile.write("{0:f} {1:f} {2:12.8f}\n".format(
                time, sep, new_energy))

            # Append information to data lists
            time_list.append(time)
            distance_list.append(sep)
            energy_list.append(new_energy)

            # Increase time
            time = time + dt
        #find fluctuation
        fluctuation = abs(
            (max(energy_list) - min(energy_list)) / np.mean(energy_list))
        #add the dt and the corresponding energy fluctuation to lists
        dt_list.append(dt)
        fluc_list.append(fluctuation)

    # Post-simulation:

    #find the maximum dt such that the energy fluctuation is less than 0.001
    for i in range(len(fluc_list)):
        if fluc_list[len(fluc_list) - 1 - i] < 0.001:
            print("the largest energy fluctuation less than 0.001 is:" +
                  str(fluc_list[len(fluc_list) - 1 - i]))
            print(
                "the maximum timestep that can be used so that the energy fluctuation is less than 0.001 is:"
                + str(dt_list[len(fluc_list) - 1 - i]))
            break

    #plot of dt vs energy fluctuation
    if sys.argv[3] == 'euler':
        pyplot.title('Symplectic Euler: energy fluctuation vs timestep')
    else:
        pyplot.title('Velocity verlet: energy fluctuation vs timestep')
    pyplot.xlabel('timestep')
    pyplot.ylabel('energy fluctuation')
    pyplot.plot(dt_list, fluc_list)
    pyplot.show()
    # Close output file
    outfile.close()
def main():

    if len(sys.argv) != 3:
        print("Wrong number of arguments.")
        print("Usage: " + sys.argv[0] + " <input file> " + " <output file> ")
        quit()
    else:
        outfile_name = sys.argv[2]
        infile_name = sys.argv[1]

    # Open output file
    outfile = open(outfile_name, "w")

    #read in input file
    infile = open(infile_name, "r")

    #Get the specific constants for the particle from the input file
    #read in first line from input file
    constants = infile.readline()
    #split first line up
    tokens = constants.split(",")

    #set up initial parameters for particles
    D = float(tokens[0])
    alpha = float(tokens[2])
    r_e = float(tokens[1])

    dt = 0.01
    numstep = 2000
    time = 0.0

    #set up the initial state of the particles

    p1 = Particle3D.file_read(infile)
    p2 = Particle3D.file_read(infile)

    sep_vector = p1.separation(p2)

    #calculate the magnitude of the separation between p1 and p2
    distance = np.linalg.norm(sep_vector)

    #get the total initial energy of the system
    energy = Particle3D.kinetic_energy(p1) + Particle3D.kinetic_energy(
        p2) + morse_pot(distance, D, alpha, r_e)

    #write the initial time, initial separation and initial total energy to the output file
    outfile.write("{0:f} {1:f} {2:12.8f}\n".format(time, distance, energy))

    # Initialise data lists for plotting later
    time_list = []
    distance_list = []
    energy_list = []

    # Start the time integration loop
    for i in range(numstep):
        #use symplectic euler to get the new separations and new total energy after the time step
        new_data = symp_euler(p1, p2, dt, D, alpha, r_e)

        #get new separations
        sep = new_data[0]

        #get  new total energy
        new_energy = new_data[1]

        # Output particle information
        outfile.write("{0:f} {1:f} {2:12.8f}\n".format(time, sep, new_energy))

        # Append information to data lists
        time_list.append(time)
        distance_list.append(sep)
        energy_list.append(new_energy)

        # Increase time
        time = time + dt

    # Post-simulation:

    # Close output file
    outfile.close()

    # Plot particle trajectory to screen

    pyplot.title('Symplectic Euler: separation vs time')
    pyplot.xlabel('Time')
    pyplot.ylabel('Separation')
    pyplot.plot(time_list, distance_list)
    pyplot.show()

    # Plot particle energy to screen

    pyplot.title('Symplectic Euler: total energy vs time')
    pyplot.xlabel('Time')
    pyplot.ylabel('Energy')
    pyplot.plot(time_list, energy_list)
    pyplot.show()