start = [] end = [] for index, row in Pepfrags.iterrows(): start.append(int(row['Start'])) end.append(int(row['End'])) start = np.array(start) end = np.array(end) return start, end #b2m test data ex_indata = pd.read_excel(args.excelin) Protein_name = ex_indata['Protein'].unique() b2m_kint = get_kint(B2m_seq, args.temp, args.pD) b2m_Pepfrags = PepFrag_find(Protein_name[2], args.state, time, args.excelin) #selects b2m as input name for subset, 1 is nan b2m_Pepfrags_uptake = PepFrag_uptake(Protein_name[2], args.state, time, args.excelin) b2m_Pepfrags_uptake = b2m_Pepfrags_uptake.to_numpy() b2m_Pval = get_expPval(b2m_Pepfrags, b2m_Pepfrags_uptake, b2m_kint, Protein_name[2]) b2m_start, b2m_end = get_pepstartend(b2m_Pepfrags) #Input training Peptide DU data ex_indata = pd.read_excel(args.excelin) Protein_name = ex_indata['Protein'].unique() kint = get_kint(Seq, args.temp, args.pD) Pepfrags = PepFrag_find(Protein_name[0], args.state, time, args.excelin) Pepfrags_uptake = PepFrag_uptake(Protein_name[0], args.state, time, args.excelin) Pepfrags_uptake = Pepfrags_uptake.to_numpy() Pval = get_expPval(Pepfrags, Pepfrags_uptake, kint, Protein_name[0]) Start, End = get_pepstartend(Pepfrags) #Input Histogram Data
def __init__(self, inputdata): #Set custom parameters for specific model self.time = 0.5 self.HM8_modelparams = [ 3.28979445e-08, 1.98441207e+00, 8.96847944e+00, -2.58808757e-01 ] #Create empty result objects self.Pval_exp = [] self.Pval_pred = [] #load simulation histogram data self.SASA = np.load('dist_sasa_20bins/SASA_hist.npy', allow_pickle=True) self.DIST = np.load('dist_sasa_20bins/DIST_hist.npy', allow_pickle=True) #Load experimental peptide fragment data ex_indata = pd.read_excel(inputdata) Protein_name = ex_indata['Protein'].unique() Pepfrags = PepFrag_find(Protein_name[0], args.state, self.time, args.excelin) Pepfrags_uptake = PepFrag_uptake(Protein_name[0], args.state, self.time, args.excelin) self.fitting_data = Pepfrags_uptake.to_numpy() #Calculate intrinsic protection factors self.Seq = 'MGSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQRMEPRAPWIEQEGPEYWDGETRKVKAHSQTHRVDLGTLRGYYNQSEAGSHTVQRMYGCDVGSDWR' \ 'FLRGYHQYAYDGKDYIALKEDLRSWTAADMAAQTTKHKWEAAHVAEQLRAYLEGTCVEWLRRYLENGKETLQRTDAPKTHMTHHAVSDHEATLRCWALSFYPAEITLT' \ 'WQRDGEDQTQDTELVETRPAGDGTFQKWAAVVVPSGQEQRYTCHVQHEGLPKPLTLRWE' self.kint = [] for counter, aminoacid in enumerate(self.Seq[0:len(self.Seq)]): self.kint.append( calc_kint_Alt(self.Seq[counter], self.Seq[counter - 1], int(args.temp), int(args.pD), counter, len(self.Seq))) #Calculate P-factors for experimental peptide fragments count = 0 Pval = [] for index, row in Pepfrags.iterrows(): print(row) kintval = [] if row['End'] > len(self.kint): continue for j in range(int(row['Start']), int(row['End'])): kintval.append(self.kint[j]) kintval_avg = np.array(kintval).mean() v1 = (self.fitting_data[count]) v2 = -1 * (v1 - 1) v3 = log(v2) / self.time P_factor = -1 * (kintval_avg) / v3 lnPF = log(P_factor) Pval.append(lnPF) count += 1 self.count = count self.Pval_exp = Pval start = [] end = [] for index, row in Pepfrags.iterrows(): start.append(int(row['Start'])) end.append(int(row['End'])) self.start = np.array(start) self.end = np.array(end)