Exemple #1
0
 def test_training(self):
     num_epochs = 2
     dl = DataloaderImages((149, 117), ignore_useless_states=False)
     st = ModelTrainer(
         lambda: DeconvModelEfficient(),
         self.test_src_dir,
         self.training_save_path,
         load_datasets_path=self.test_split_dir,
         cache_path=None,
         batch_size=16,
         train_print_frequency=10,
         epochs=num_epochs,
         num_workers=4,
         num_validation_samples=2,
         num_test_samples=self.num_test_samples,
         data_processing_function=dl.get_sensordata_and_flowfront,
         data_gather_function=get_filelist_within_folder_blacklisted,
         loss_criterion=torch.nn.BCELoss(),
         classification_evaluator_function=lambda summary_writer:
         SensorToFlowfrontEvaluator(summary_writer=summary_writer),
         data_root=test_resources.test_src_dir,
     )
     st.start_training()
     dirs = [e for e in self.training_save_path.iterdir() if e.is_dir()]
     with open(dirs[0] / 'output.log') as f:
         content = f.read()
         epochs = re.findall('Mean Loss on Eval', content)
         self.assertEqual(num_epochs, len(epochs))
         # Check if steps are growing / if there are doubled steps in the output
         steps = [
             int(re.findall(r'\d+', x)[0])
             for x in re.findall(r'Duration of step.+\d:', content)
         ]
         self.assertEqual(len(set(steps)), len(steps))
Exemple #2
0
 def test_eval_preparation(self):
     dl = DataloaderImages((149, 117), ignore_useless_states=False)
     st = ModelTrainer(
         lambda: DeconvModelEfficient(),
         self.test_src_dir,
         self.eval_output_path,
         load_datasets_path=self.test_split_dir,
         cache_path=None,
         batch_size=2,
         train_print_frequency=10,
         epochs=0,
         num_workers=4,
         num_validation_samples=2,
         num_test_samples=self.num_test_samples,
         data_processing_function=dl.get_sensordata_and_flowfront,
         data_gather_function=get_filelist_within_folder_blacklisted,
         classification_evaluator_function=lambda summary_writer:
         SensorToFlowfrontEvaluator(summary_writer=summary_writer),
         data_root=test_resources.test_src_dir,
     )
     st.start_training()
     dirs = [e for e in self.eval_output_path.iterdir() if e.is_dir()]
     code_dir = dirs[0] / 'rtm-predictions'
     slurm_script = dirs[0] / 'run_model_eval.sh'
     self.assertTrue(os.path.isdir(code_dir))
     self.assertTrue(os.path.isfile(slurm_script))
     with open(slurm_script) as f:
         lines = f.read().splitlines()
         tokens = lines[-1].split()
         self.assertEqual(dirs[0], Path(tokens[-3]))
     st.writer.flush()
     st.writer.close()
Exemple #3
0
 def test_training_load_optimizer(self):
     dl = DataloaderImages((149, 117), ignore_useless_states=False)
     st = ModelTrainer(
         lambda: DeconvModelEfficient(),
         self.test_src_dir,
         self.training_save_path,
         load_datasets_path=self.test_split_dir,
         cache_path=None,
         batch_size=16,
         train_print_frequency=10,
         epochs=self.expected_num_epochs_during_training,
         num_workers=4,
         num_validation_samples=2,
         num_test_samples=self.num_test_samples,
         data_processing_function=dl.get_sensordata_and_flowfront,
         data_gather_function=get_filelist_within_folder_blacklisted,
         loss_criterion=torch.nn.BCELoss(),
         optimizer_path=self.checkpoint,
         classification_evaluator_function=lambda summary_writer:
         SensorToFlowfrontEvaluator(summary_writer=summary_writer),
         data_root=test_resources.test_src_dir,
     )
     st.start_training()
     after = len(st.optimizer.state.keys())
     """ Optimizer has now more than 0 states, therefore was loaded """
     self.assertGreater(after, 0)
Exemple #4
0
    def test_save_load_training(self):
        num_epochs = 2
        dl = DataloaderImages((149, 117), ignore_useless_states=False)
        st = ModelTrainer(
            lambda: DeconvModelEfficient(),
            self.test_src_dir,
            self.training_save_path,
            load_datasets_path=self.test_split_dir,
            cache_path=None,
            batch_size=16,
            train_print_frequency=10,
            epochs=num_epochs,
            num_workers=4,
            num_validation_samples=2,
            num_test_samples=self.num_test_samples,
            data_processing_function=dl.get_sensordata_and_flowfront,
            data_gather_function=get_filelist_within_folder_blacklisted,
            loss_criterion=torch.nn.BCELoss(),
            classification_evaluator_function=lambda summary_writer:
            SensorToFlowfrontEvaluator(summary_writer=summary_writer),
            data_root=test_resources.test_src_dir,
        )
        st.start_training()

        num_epochs = 2
        dl = DataloaderImages((149, 117), ignore_useless_states=False)
        st = ModelTrainer(
            lambda: DeconvModelEfficient(),
            self.test_src_dir,
            self.training_save_path,
            load_datasets_path=self.test_split_dir,
            cache_path=None,
            batch_size=16,
            train_print_frequency=10,
            epochs=num_epochs,
            num_workers=4,
            num_validation_samples=2,
            num_test_samples=self.num_test_samples,
            data_processing_function=dl.get_sensordata_and_flowfront,
            data_gather_function=get_filelist_within_folder_blacklisted,
            loss_criterion=torch.nn.BCELoss(),
            classification_evaluator_function=lambda summary_writer:
            SensorToFlowfrontEvaluator(summary_writer=summary_writer),
            data_root=test_resources.test_src_dir,
        )
        st.start_training()
Exemple #5
0
    def test_eval(self):
        dl = DataloaderImages((149, 117), ignore_useless_states=False)
        st = ModelTrainer(
            lambda: DeconvModelEfficient(),
            self.test_src_dir,
            self.eval_output_path,
            load_datasets_path=self.test_split_dir,
            cache_path=None,
            batch_size=2,
            train_print_frequency=10,
            epochs=self.expected_num_epochs_during_training,
            num_workers=10,
            num_validation_samples=2,
            num_test_samples=self.num_test_samples,
            data_processing_function=dl.get_sensordata_and_flowfront,
            data_gather_function=get_filelist_within_folder_blacklisted,
            loss_criterion=torch.nn.BCELoss(),
            classification_evaluator_function=lambda summary_writer:
            SensorToFlowfrontEvaluator(self.eval_output_path /
                                       "eval_on_test_set",
                                       skip_images=False,
                                       summary_writer=summary_writer),
            data_root=test_resources.test_src_dir,
        )

        st.inference_on_test_set(
            self.eval_output_path,
            self.checkpoint,
            classification_evaluator_function=lambda summary_writer:
            SensorToFlowfrontEvaluator(self.eval_output_path /
                                       "eval_on_test_set",
                                       skip_images=False,
                                       summary_writer=summary_writer))

        with open(self.eval_output_path / "eval_on_test_set" /
                  "test_output.log") as f:
            content = f.read()
            loss = float(
                re.findall(r'\d+.\d+',
                           re.findall(r'Eval: \d+\.\d+', content)[0])[0])
            self.assertEqual(np.round(loss, 4), self.expected_loss)
        img_path = self.eval_output_path / 'eval_on_test_set' / 'images'
        list_all_imgs = list(img_path.glob('**/*.jpg'))
        self.assertEqual(len(list_all_imgs), self.expected_num_frames)
Exemple #6
0
from Models.erfh5_DeconvModel import S80DeconvModelEfficient2
from Pipeline.data_gather import get_filelist_within_folder_blacklisted
from Pipeline.data_loaders_IMG import DataloaderImages
from Trainer.ModelTrainer import ModelTrainer
from Trainer.evaluation import SensorToFlowfrontEvaluator
from Utils.training_utils import read_cmd_params

if __name__ == "__main__":
    """
    This is the starting point for training the Deconv/Conv Part of the FlowFrontNet 
    with 80 sensor data to Flowfront images.
    """
    args = read_cmd_params()

    img_size = (112, 96)
    dl = DataloaderImages(image_size=img_size, sensor_indizes=((1, 4), (1, 4)))

    m = ModelTrainer(
        lambda: S80DeconvModelEfficient2(demo_mode=True
                                         if args.demo is not None else False),
        data_source_paths=r.get_data_paths_base_0(),
        save_path=r.save_path if args.demo is None else Path(args.demo),
        load_datasets_path=r.datasets_dryspots,
        cache_path=r.cache_path,
        batch_size=128,
        train_print_frequency=100,
        epochs=1000,
        num_workers=75,
        num_validation_samples=131072,
        num_test_samples=1048576,
        data_processing_function=dl.get_sensordata_and_flowfront,
import torch

import Resources.training as r
from Models.erfh5_DeconvModel import DeconvModelEfficient
from Pipeline.data_gather import get_filelist_within_folder_blacklisted
from Pipeline.data_loaders_IMG import DataloaderImages
from Trainer.ModelTrainer import ModelTrainer
from Trainer.evaluation import SensorToFlowfrontEvaluator

if __name__ == "__main__":
    dl = DataloaderImages((149, 117))

    checkpoint_p = r.chkp_S1140_to_ff_0_basepr
    adv_output_dir = checkpoint_p.parent / "advanced_eval"

    m = ModelTrainer(
        lambda: DeconvModelEfficient(),
        data_source_paths=r.get_data_paths_base_0(),
        save_path=r.save_path,
        load_datasets_path=r.datasets_dryspots,
        cache_path=r.cache_path,
        batch_size=2048,
        train_print_frequency=10,
        epochs=1000,
        num_workers=75,
        num_validation_samples=131072,
        num_test_samples=1048576,
        data_processing_function=dl.get_sensordata_and_flowfront,
        data_gather_function=get_filelist_within_folder_blacklisted,
        loss_criterion=torch.nn.MSELoss(),
        optimizer_function=lambda params: torch.optim.AdamW(params, lr=0.0001),
import torch

import Resources.training as r
from Models.erfh5_DeconvModel import S80DeconvModelEfficient2
from Pipeline.data_gather import get_filelist_within_folder_blacklisted
from Pipeline.data_loaders_IMG import DataloaderImages
from Trainer.ModelTrainer import ModelTrainer
from Trainer.evaluation import SensorToFlowfrontEvaluator

if __name__ == "__main__":
    dl = DataloaderImages(image_size=(112, 96),
                          sensor_indizes=((1, 4), (1, 4)))

    checkpoint_p = r.chkp_S80_to_ff2
    adv_output_dir = checkpoint_p.parent / "advanced_eval"

    m = ModelTrainer(
        lambda: S80DeconvModelEfficient2(pretrained="all",
                                         freeze_nlayers=9,
                                         checkpoint_path=checkpoint_p,
                                         round_at=.8),
        data_source_paths=r.get_data_paths_base_0(),
        save_path=r.save_path,
        dataset_split_path=r.dataset_split,
        cache_path=r.cache_path,
        batch_size=2048,
        train_print_frequency=100,
        epochs=1000,
        num_workers=75,
        num_validation_samples=131072,
        num_test_samples=1048576,
import Resources.training as r
from Models.erfh5_DeconvModel import DeconvModelEfficient
from Pipeline.data_gather import get_filelist_within_folder_blacklisted
from Pipeline.data_loaders_IMG import DataloaderImages
from Trainer.ModelTrainer import ModelTrainer
from Trainer.evaluation import SensorToFlowfrontEvaluator
from Utils.training_utils import read_cmd_params

if __name__ == "__main__":
    """
    This is the starting point for training the Deconv/Conv Part of the FlowFrontNet 
    with 1140 sensor data to Flowfront images.
    """
    args = read_cmd_params()

    dl = DataloaderImages(image_size=(149, 117))
    m = ModelTrainer(
        lambda: DeconvModelEfficient(),
        data_source_paths=r.get_data_paths_base_0(),
        save_path=r.save_path if args.demo is None else Path(args.demo),
        load_datasets_path=r.datasets_dryspots,
        cache_path=r.cache_path,
        batch_size=2048,
        train_print_frequency=100,
        epochs=1000,
        num_workers=75,
        num_validation_samples=131072,
        num_test_samples=1048576,
        data_processing_function=dl.get_sensordata_and_flowfront,
        data_gather_function=get_filelist_within_folder_blacklisted,
        loss_criterion=torch.nn.MSELoss(),
 def test_ignore_useless(self):
     dl = DataloaderImages()
     dl2 = DataloaderImages(ignore_useless_states=False)
     res = dl.get_sensordata_and_flowfront(resources.test_useless_file)
     res2 = dl2.get_sensordata_and_flowfront(resources.test_useless_file)
     self.assertEqual(len(res2) - len(res), 17)  # since 17 frames are ignored in this file