def main(self, name='Apache', reps=20): out_xtrees = ['xtrees'] out_HOW = ['HOW'] out_cart = ['CART'] out_basln = ['Base'] out_baslnFss = ['Base+FSS'] for _ in xrange(reps): data = self.explorer(name) for d in data: if name == d[0].strip().split('/')[-2]: # set_trace() train = [d[0] + d[1][1]] test = [d[0] + d[1][0]] # set_trace() train_df = formatData(createTbl(train, _smote=False, isBin=False)) test_df = formatData(createTbl(test, _smote=False, isBin=False)) actual = test_df[test_df.columns[-2]].astype('float32').tolist() before = predictor(train=train_df, test=test_df).rforest() "Apply Different Planners" xTrees = xtrees(train=train, test=test, bin=False, majority=True).main() cart = xtrees(train=train, test=test, bin=False, majority=False).main() how = HOW(name) baseln = strawman( train=train, test=test).main( config=True) baselnFss = strawman( train=train, test=test, prune=True).main(config=True) after = lambda newTab: predictor( train=train_df, test=formatData(newTab)).rforest() frac = lambda aft: sum(aft) / sum(before) # set_trace() out_xtrees.append(frac(after(xTrees))) out_cart.append(frac(after(cart))) out_HOW.extend(how) out_basln.append(frac(after(baseln))) out_baslnFss.append(frac(after(baselnFss))) return [out_xtrees, out_cart, out_HOW, out_basln, out_baslnFss]
def main(self, name='Apache', reps=20): out_xtrees = ['xtrees'] out_HOW = ['HOW'] out_cart = ['CART'] out_basln = ['Base'] out_baslnFss = ['Base+FSS'] for _ in xrange(reps): data = self.explorer(name) for d in data: if name == d[0].strip().split('/')[-2]: # set_trace() train = [d[0] + d[1][1]] test = [d[0] + d[1][0]] # set_trace() train_df = formatData( createTbl(train, _smote=False, isBin=False)) test_df = formatData( createTbl(test, _smote=False, isBin=False)) actual = test_df[test_df.columns[-2]].astype( 'float32').tolist() before = predictor(train=train_df, test=test_df).rforest() "Apply Different Planners" xTrees = xtrees(train=train, test=test, bin=False, majority=True).main() cart = xtrees(train=train, test=test, bin=False, majority=False).main() how = HOW(name) baseln = strawman(train=train, test=test).main(config=True) baselnFss = strawman(train=train, test=test, prune=True).main(config=True) after = lambda newTab: predictor( train=train_df, test=formatData(newTab)).rforest() frac = lambda aft: sum(aft) / sum(before) # set_trace() out_xtrees.append(frac(after(xTrees))) out_cart.append(frac(after(cart))) out_HOW.extend(how) out_basln.append(frac(after(baseln))) out_baslnFss.append(frac(after(baselnFss))) return [out_xtrees, out_cart, out_HOW, out_basln, out_baslnFss]
def main(self, name='Apache', reps=20): rseed(1) for planner in ['DTREE', 'CD+FS', 'CD', 'BIC']: out = [planner] after = lambda newTab: predictor( train=train_df, test=formatData(newTab)).rforest() frac = lambda aft: (1 - sum(aft) / sum(before)) data = self.explorer(name) for d in data: if name == d[0].strip().split('/')[-2]: # set_trace() train = [d[0] + d[1][1]] test = [d[0] + d[1][0]] # set_trace() train_df = formatData(createTbl(train, _smote=False, isBin=False)) test_df = formatData(createTbl(test, _smote=False, isBin=False)) valid = [ isValid( new.cells, name=name) for new in createTbl( test, _smote=False, isBin=False)._rows] actual = test_df[test_df.columns[-2]].astype('float32').tolist() before = predictor(train=train_df, test=test_df).rforest() for _ in xrange(reps): newTab = None # Just so I am sure, there isn't any residue. "Apply Different Planners" if planner == 'xtrees': newTab = xtrees(train=train, test=test, bin=False, majority=True, name=name).main() if planner == 'DTREE': newTab = xtrees(train=train, test=test, bin=False, majority=False, name=name).main() valid = [isValid(new.cells, name=name) for new in newTab._rows] # set_trace() if planner == 'BIC': newTab = HOW(name) valid = [isValid(new.cells, name=name) for new in newTab._rows] # set_trace() if planner == 'CD': newTab = strawman(name=name, train=train, test=test).main(mode="config") valid = [isValid(new.cells, name=name) for new in newTab._rows] # set_trace() if planner == 'CD+FS': newTab = strawman(name=name, train=train, test=test, prune=True).main(mode="config") valid = [isValid(new.cells, name=name) for new in newTab._rows] # set_trace() try: out.append(frac(after(newTab))) except: set_trace() yield out
def deltas(self, name, planner): predRows = [] delta = [] data = self.explorer(name) rows = lambda newTab: map(lambda r: r.cells[:-2], newTab._rows) for d in data: if name == d[0].strip().split('/')[-2]: train = [d[0] + '/' + d[1][1]] test = [d[0] + '/' + d[1][0]] train_DF = createTbl(train, isBin=False) test_df = createTbl(test, isBin=False) self.headers = train_DF.headers write2file(rows(test_df), fname='before_cpm') # save file """ Apply Learner """ if planner == 'xtrees': newTab = xtrees(train=train, test=test, bin=False, majority=True, name=name).main(justDeltas=True) delta.append( [d for d in self.delta1(newTab, train_DF.headers, norm=len(predRows))]) return np.array( np.sum(delta[0], axis=0), dtype='float') / np.size(newTab, axis=0) if planner == 'DTREE': newTab = xtrees(train=train, test=test, bin=False, majority=False, name=name).main(justDeltas=True) delta.append( [d for d in self.delta1(newTab, train_DF.headers, norm=len(predRows))]) return np.array( np.sum(delta[0], axis=0), dtype='float') / np.size(newTab, axis=0) if planner == 'BIC': newTab = HOW(name, justDeltas=True) delta.append( [d for d in self.delta1(newTab, train_DF.headers, norm=len(predRows))]) return np.array( np.sum(delta[0], axis=0), dtype='float') / np.size(newTab, axis=0) if planner == 'CD': newTab = strawman(name=name, train=train, test=test).main(mode="config", justDeltas=True) delta.append( [d for d in self.delta1(newTab, train_DF.headers, norm=len(predRows))]) return np.array( np.sum(delta[0], axis=0), dtype='float') / np.size(newTab, axis=0) if planner == 'CD+FS': newTab = strawman(name=name, train=train, test=test, prune=True).main(mode="config", justDeltas=True) delta.append( [d for d in self.delta1(newTab, train_DF.headers, norm=len(predRows))]) return np.array( np.sum(delta[0], axis=0), dtype='float') / np.size(newTab, axis=0)