Exemple #1
0
        get_origin_data_ins = Get_amazon_data_movie_tv(FLAGS=FLAGS)
        get_origin_data_ins.getDataStatistics()
    elif FLAGS.type == "music":
        get_origin_data_ins = Get_amazon_data_music(FLAGS=FLAGS)
        get_origin_data_ins.getDataStatistics()

    elif FLAGS.type == "elec":
        get_origin_data_ins = Get_amazon_data_elec(FLAGS=FLAGS)
        get_origin_data_ins.getDataStatistics()

    elif FLAGS.type == 'taobaoapp':
        get_origin_data_ins = Get_taobaoapp_data(FLAGS=FLAGS)
        get_origin_data_ins.getDataStatistics()

    # get_train_test_ins = Get_train_test(FLAGS=self.FLAGS,origin_data=get_origin_data_ins.origin_data)
    prepare_data_behavior_ins = prepare_data_base(
        FLAGS, get_origin_data_ins.origin_data)
    prepare_data_behavior_ins.map_process()
    train_set, test_set = prepare_data_behavior_ins.get_train_test()

    # fetch part of test_data
    # if len(self.test_set) > 10000:
    # self.test_set = random.sample(self.test_set,10000)
    # self.test_set = self.test_set.sample(3500)

    logger.info('DataHandle Process.\tCost time: %.2fs' %
                (time.time() - start_time))
    start_time = time.time()

    top_pop_ins = top_pop_model(train_set, prepare_data_behavior_ins)
    top_pop_ins.cal_p_pop(1)
    top_pop_ins.cal_p_pop(5)
Exemple #2
0
    def __init__(self):

        start_time = time.time()
        model_parameter_ins = model_parameter()
        experiment_name = model_parameter_ins.flags.FLAGS.experiment_name
        self.FLAGS = model_parameter_ins.get_parameter(experiment_name).FLAGS

        log_ins = create_log(type=self.FLAGS.type,
                             experiment_type=self.FLAGS.experiment_type,
                             version=self.FLAGS.version)

        self.logger = log_ins.logger
        self.logger.info("hello world the experiment begin")

        # logger.info("The model parameter is :" + str(self.FLAGS._parse_flags()))

        if self.FLAGS.type == "yoochoose":
            get_origin_data_ins = Get_yoochoose_data(FLAGS=self.FLAGS)
            get_origin_data_ins.getDataStatistics()

        elif self.FLAGS.type == "movielen":
            get_origin_data_ins = Get_movie_data(FLAGS=self.FLAGS)
            get_origin_data_ins.getDataStatistics()

        if self.FLAGS.type == "tmall":
            get_origin_data_ins = Get_tmall_data(FLAGS=self.FLAGS)

        elif self.FLAGS.type == "movie_tv":
            get_origin_data_ins = Get_amazon_data_movie_tv(FLAGS=self.FLAGS)
            get_origin_data_ins.getDataStatistics()

        elif self.FLAGS.type == "elec":
            get_origin_data_ins = Get_amazon_data_elec(FLAGS=self.FLAGS)
            get_origin_data_ins.getDataStatistics()

        elif self.FLAGS.type == "music":
            get_origin_data_ins = Get_amazon_data_music(FLAGS=self.FLAGS)
            get_origin_data_ins.getDataStatistics()

        elif self.FLAGS.type == 'taobaoapp':
            get_origin_data_ins = Get_taobaoapp_data(FLAGS=self.FLAGS)
            get_origin_data_ins.getDataStatistics()

        elif self.FLAGS.type == "beauty":
            get_origin_data_ins = Get_amazon_data_beauty(FLAGS=self.FLAGS)
            get_origin_data_ins.getDataStatistics()

        elif self.FLAGS.type == "brightkite":
            get_origin_data_ins = Get_BrightKite_data(FLAGS=self.FLAGS)
            get_origin_data_ins.getDataStatistics()
        elif self.FLAGS.type == "order":
            get_origin_data_ins = Get_Order_data(FLAGS=self.FLAGS)
            get_origin_data_ins.getDataStatistics()

        #get_train_test_ins = Get_train_test(FLAGS=self.FLAGS,origin_data=get_origin_data_ins.origin_data)
        prepare_data_behavior_ins = prepare_data_base(
            self.FLAGS, get_origin_data_ins.origin_data)
        self.train_set, self.test_set = prepare_data_behavior_ins.get_train_test(
        )

        #fetch part of test_data
        #if len(self.train_set) > 2000000:
        #self.test_set = random.sample(self.train_set,2000000)
        #self.test_set = self.test_set.sample(3500)

        self.logger.info('DataHandle Process.\tCost time: %.2fs' %
                         (time.time() - start_time))
        start_time = time.time()

        self.emb = Behavior_embedding_time_aware_attention(
            is_training=self.FLAGS.is_training,
            user_count=prepare_data_behavior_ins.user_count,
            item_count=prepare_data_behavior_ins.item_count,
            category_count=prepare_data_behavior_ins.category_count,
            max_length_seq=self.FLAGS.length_of_user_history)

        self.logger.info('Get Train Test Data Process.\tCost time: %.2fs' %
                         (time.time() - start_time))

        self.item_category_dic = prepare_data_behavior_ins.item_category_dic
        self.global_step = 0
        self.one_epoch_step = 0
        self.now_epoch = 0