Exemple #1
0
    def trainmodel(self):
        prep = Preprocess("default of credit card clients.xls")
        prep.load()
        low_dim_x1, low_dim_x2, low_dim_y1, low_dim_y2 = prep.dimension_decrease(
        )
        postp = Postprocess(low_dim_x1, low_dim_x2, low_dim_y1, low_dim_y2)
        discretized_x1, discretized_x2, discretized_y1, discretized_y2 = postp.improve_data(
        )
        x = np.concatenate((discretized_x1, discretized_x2))
        y = np.concatenate((discretized_y1, discretized_y2))
        self.c.fit(x, y)

        y_pred = self.c.predict(x)
        mislabeled = (y != y_pred).sum()
        totaltest = x.shape[0]
        print(
            "Mislabeled points (%s Classification) out of a total %d points : %d"
            % ("SVC", totaltest, mislabeled))
        Precision = 1 - mislabeled / totaltest
        print("Precision of %s is %4.2f%%" % ("SVC", Precision * 100))
 def load_data(self, sample, x_axi_attr_index, y_axi_attr_index):
     from Preprocessing import Preprocess
     from Postprocessing import Postprocess
     creditdata = Preprocess("default of credit card clients.xls")
     raw_X_train, raw_X_test, raw_y_train, raw_y_test = creditdata.load()
     low_dim_X_train, low_dim_X_test, low_dim_Y_train, low_dim_Y_test = creditdata.dimension_decrease(
     )
     postp = Postprocess(low_dim_X_train, low_dim_X_test, low_dim_Y_train,
                         low_dim_Y_test)
     x1, x2, y1, y2 = postp.improve_data()
     return self.data_simplification(x1, y1, sample, x_axi_attr_index,
                                     y_axi_attr_index)
 def __init__(self):
     self.classifier = []
     self.processor = []
     self.result = []
     creditdata = Preprocess("default of credit card clients.xls")
     self.raw_X_train, self.raw_X_test, self.raw_Y_train, self.raw_Y_test = creditdata.load(
     )
     self.low_dim_X_train, self.low_dim_X_test, self.low_dim_Y_train, self.low_dim_Y_test = \
         creditdata.dimension_decrease()
     x1, x2, y1, y2 = self.low_dim_X_train, self.low_dim_X_test, self.low_dim_Y_train, self.low_dim_Y_test
     self.discretizer = Postprocess(x1, x2, y1, y2)
     self.discretized_X_train, self.discretized_X_test, self.discretized_Y_train, self.discretized_Y_test = \
         self.discretizer.improve_data()
     self.buildclf()
     self.buildprocessor()
     self.logfile = open("execution_Log", "a")
Exemple #4
0
            # group owed amount into different intervals
            if -100000 <= temp_owe < 0:
                self.x_test[row, 6] = -1
            elif -500000 <= temp_owe < -100000:
                self.x_test[row, 6] = -2
            elif temp_owe < -500000:
                self.x_test[row, 6] = -3
            elif self.x_test[row, 6] == 0:
                continue
            elif 1 <= temp_owe < 100001:
                self.x_test[row, 6] = 1
            elif 10000 <= temp_owe < 500001:
                self.x_test[row, 6] = 2
            else:
                self.x_test[row, 6] = 3

    def improve_data(self):
        self.set_age()
        self.set_amount()
        return self.x_train, self.x_test, self.y_train, self.y_test


if __name__ == '__main__':
    a = Preprocess("default of credit card clients.xls")
    rx1, rx2, ry1, ry2 = a.load()
    x1, x2, y1, y2 = a.dimension_decrease()
    b = Postprocess(x1, x2, y1, y2)
    xd1, xd2, yd1, yd2 = b.improve_data()