Exemple #1
0
def gaussianArrND(shape=(256, 256), sigma=2., peakVal=None, orig=None, rot=0):
    try:
        ndim = len(shape)
    except TypeError:
        shape = [shape]
        ndim = 1
    sidx = ndim + 2
    slices = [Ellipsis] + [slice(0, m) for m in shape]
    inds, LD = imgFit.rotateIndicesND(slices, N.float32, rot)
    #inds = N.indices(shape, N.float32)

    try:
        if len(sigma) != ndim:
            raise ValueError, 'len(sigma) must be the same as len(shape)'
    except TypeError:
        sigma = [sigma] * ndim

    if orig is None:
        c = N.asarray(shape, N.float32) / 2.
    else:
        c = N.asarray(orig, N.float32)

    if peakVal:
        k0 = peakVal
    else:
        k0 = 1. / (N.average(sigma) * ((2 * N.pi)**0.5))

    param = [0, k0] + list(c) + list(sigma)
    param = N.asarray(param, N.float32)
    return imgFit.yGaussianND(param, inds, sidx)
Exemple #2
0
def arr_histStretch(img, imgMin=None, imgMax=None, scaleMax=None):
    """
    scaleMax = None: use maximum possible for the dtype
    """
    if imgMin is None:
        imgMin = img.min()
    if imgMax is None:
        imgMax = img.max()
    if scaleMax is None:
        img = N.asarray(img)
        scaleMax = 1 << (img.nbytes // img.size) * 8
        scaleMax -= 1

    img = img - imgMin  #img.min()
    ratio = float(scaleMax) / imgMax  #img.max()

    return N.asarray(ratio * img, img.dtype.type)
Exemple #3
0
def paddingFourier(arr, shape, value=0, interpolate=True):
    """
    arr:         assuming origin at 0, rfft product (half x size), up to 3D
    shape:       target shape
    value:       the value to fill in empty part 
    interpolate: shift by interpolation if necessary

    return array with target shape
    """
    # prepare buffer
    dtype = arr.dtype.type
    canvas = N.empty(shape, dtype)
    canvas[:] = value

    # calc and shift
    shapeS = N.array(arr.shape)
    shapeL = N.asarray(shape)
    halfS = shapeS / 2.
    subpx_shift = halfS % 1
    if interpolate and N.sometrue(subpx_shift):
        arr = U.nd.shift(arr, subpx_shift)

    # create empty list for slices
    nds = arr.ndim - 1
    choices = ['slice(halfS[%i])', 'slice(-halfS[%i], None)']
    nchoices = len(choices)
    nds2 = nds**2
    slcs = []
    for ns in range(nds2):
        slcs.append([])
        for n in range(nchoices * nds):
            slcs[ns].append(
                [Ellipsis])  # Ellipsis help to make arbitray number of list

    # fill the empty list by slice (here I don't know how to use 4D..)
    for i in range(nds2):
        for d in range(nds):
            for x in range(nds):
                for c, choice in enumerate(choices):
                    if d == 0 and x == 0:
                        idx = x * (nchoices) + c
                    else:  # how can I use 4D??
                        idx = x * (nchoices) + (nchoices - 1) - c
                    exec('content=' + choice % d)
                    slcs[i][idx] += [content]

    # cutout and paste
    for slc in slcs:
        for s in slc:
            s.append(slice(shapeS[-1]))
            #print s
            canvas[s] = arr[s]
    return canvas
Exemple #4
0
def mask_gaussianND(arr, zyx, v, sigma=2., ret=None, rot=0, clipZero=True):
    ''' 
    subtract elliptical gaussian at y,x with peakVal v
    if ret, return arr, else, arr itself is edited
    '''
    import imgGeo
    zyx = N.asarray(zyx)
    ndim = arr.ndim
    shape = N.array(arr.shape)
    try:
        if len(sigma) != ndim:
            raise ValueError, 'len(sigma) must be the same as len(shape)'
        else:
            sigma = N.asarray(sigma)
    except TypeError:  #(TypeError, ValueError):
        sigma = N.asarray([sigma] * ndim)

    # prepare small window
    slc = imgGeo.nearbyRegion(shape, N.floor(zyx), sigma * 10)
    inds, LD = imgFit.rotateIndicesND(slc, dtype=N.float32, rot=rot)
    param = (
        0,
        v,
    ) + tuple(zyx) + tuple(sigma)
    sidx = 2 + ndim
    g = imgFit.yGaussianND(N.asarray(param), inds, sidx).astype(arr.dtype.type)
    roi = arr[slc]
    if clipZero:
        g = N.where(g > roi, roi, g)

    if ret:
        e = N.zeros_like(arr)
        e[slc] = g  # this may be faster than copy()
        return arr - e
    else:
        arr[slc] -= g
Exemple #5
0
def gaussianArr2D(
        shape=(256, 256), sigma=[2., 2.], peakVal=None, orig=None, rot=0):
    """
    >1.5x faster implemetation than gaussianArrND
    shape: (y,x)
    sigma: scaler or [sigmay, sigmax]
    orig: (y,x)
    rot:   scaler anti-clockwise

    return N.float32
    """
    shape = N.asarray(shape, N.uint)
    try:
        if len(sigma) == len(shape):
            sy = 2 * (sigma[0] * sigma[0])
            sx = 2 * (sigma[1] * sigma[1])
        elif len(sigma) == 1:
            sx = sy = 2 * (sigma[0] * sigma[0])
        else:
            raise ValueError, 'sigma must be scaler or [sigmay, sigmax]'
    except TypeError:  # sigma scaler
        sx = sy = 2 * (sigma * sigma)

# print y, x
    if rot:
        yyi, xxi = imgFit.rotateIndices2D(shape, rot, orig, N.float32)
    else:
        if orig is None:
            y, x = shape / 2. - 0.5  # pixel center remove
        else:
            y, x = N.subtract(orig, 0.5)  # pixel center remove

        yi, xi = N.indices(shape, dtype=N.float32)
        yyi = y - yi
        xxi = x - xi
    k1 = -(yyi) * (yyi) / (sy) - (xxi) * (xxi) / (sx)

    if peakVal:
        k0 = peakVal
    else:
        k0 = 1. / ((sx + sy) / 2. * ((2 * N.pi)**0.5))
    return k0 * N.exp(k1)
Exemple #6
0
def evenShapeArr(a):
    """
    return even shaped array
    """
    shapeA = N.asarray(a.shape)
    shapeM = shapeA.copy()
    for i, s in enumerate(shapeM):
        if not i and s == 1:
            continue
        elif s % 2:
            shapeM[i] -= 1
    #sy,sx = shapeA
    #if sx % 2:# or sy %2:
    #    sx += 1
    #if sy % 2:
    #    sy += 1
    #shapeM = N.array([sy, sx])

    if N.sometrue(shapeA < shapeM):
        a = paddingMed(a, shapeM)
    elif N.sometrue(shapeA > shapeM):
        a = cutOutCenter(a, shapeM, interpolate=False)
    return a
Exemple #7
0
def highPassF(af, highpassSigma=2.5, wiener=0.2, cutoffFreq=3):
    """
    fourie space operations
    af: array after rfft
    half_nyx: half shape required for highpass filter
    highpassSigma: highpass filter, if 0, highpass is not done
    wiener: wiener coefficient for highpass filte
    cutoffFreq: band-pass around origin

    return: array BEFORE irfft

    WARNING: af will be changed, so use copy() if necessary
    """
    global _G, _G_SHAPE
    if highpassSigma:
        # if half_nyx is None:
        ny, nx = af.shape
        sy2 = ny / 2.
        sx2 = nx - 1
        shape = (sy2 * 2, sx2 + 1)
        if _G is not None and N.alltrue(_G_SHAPE == shape):
            g = _G
        else:
            g = gaussianArr2D(shape, highpassSigma, peakVal=1, orig=(sy2, 0))
            _G = g
            _G_SHAPE = N.asarray(shape)
        g += wiener
        af[:sy2] /= g[sy2:]
        af[sy2:] /= g[:sy2]

    # kill DC
    af.flat[0] = 0
    # kill lowest freq
    af[0:cutoffFreq] = 0
    af[:, 0:cutoffFreq] = 0

    return af
Exemple #8
0
def Xcorr(a,
          b,
          highpassSigma=2.5,
          wiener=0.2,
          cutoffFreq=3,
          forceSecondPeak=None,
          acceptOrigin=True,
          maskSigmaFact=1.,
          removeY=None,
          removeX=None,
          ret=None,
          normalize=True,
          gFit=True,
          lap=None,
          win=11):
    """
    returns (y,x), image
    if ret is True, returns [v, yx, image]

    to get yx cordinate of the image,
    yx += N.divide(picture.shape, 2)

    a, b:            2D array
    highpassSigma:   sigma value used for highpass pre-filter
    wiener:          wiener value used for highpass pre-filter
    cutoffFreq:      kill lowest frequency component from 0 to this level
    forceSecondPeak: If input is n>0 (True is 1), pick up n-th peak
    acceptOrigin:    If None, result at origin is rejected, look for the next peak
    maskSigmaFact:   Modifier to remove previous peak to look for another peak
    removeYX:        Rremove given number of pixel high intensity lines of the Xcorr
                     Y: Vertical, X: Horizontal
    normalize:       intensity normalized
    gFit:            peak is fitted to 2D gaussian array, if None use center of mass
    win:             window for gFit

    if b is a + (y,x) then, answer is (-y,-x)
    """
    shapeA = N.asarray(a.shape)
    shapeB = N.asarray(b.shape)
    shapeM = N.max([shapeA, shapeB], axis=0)
    shapeM = N.where(shapeM % 2, shapeM + 1, shapeM)
    center = shapeM / 2.

    arrs = [a, b]
    arrsS = ['a', 'b']
    arrsF = []
    for i, arr in enumerate(arrs):
        if arr.dtype not in [N.float32, N.float64]:
            arr = N.asarray(arr, N.float32)
        # this convolution has to be done beforehand to remove 2 pixels at the edge
        if lap == 'nothing':
            pass
        elif lap:
            arr = arr_Laplace(arr, mask=2)
        else:
            arr = arr_sorbel(arr, mask=1)

        if N.sometrue(shapeA < shapeM):
            arr = paddingMed(arr, shapeM)

        if normalize:
            mi, ma, me, sd = U.mmms(arr)
            arr = (arr - me) / sd

        if i == 1:
            arr = F.shift(arr)
        af = F.rfft(arr)

        af = highPassF(af, highpassSigma, wiener, cutoffFreq)
        arrsF.append(af)

    # start cross correlation
    af, bf = arrsF
    bf = bf.conjugate()
    cf = af * bf

    # go back to space domain
    c = F.irfft(cf)
    #  c = _changeOrigin(cr)

    # removing lines
    if removeX:
        yi, xi = N.indices((removeX, shapeM[-1]))  #sx))
        yi += center[-2] - removeX / 2.  #sy/2 - removeX/2
        c[yi, xi] = 0
    if removeY:
        yi, xi = N.indices((shapeM[-2], removeY))  #sy, removeY))
        xi += center[-1] - removeY / 2.  #sx/2 - removeY/2
        c[yi, xi] = 0

    # find the first peak
    if gFit:
        v, yx, s = findMaxWithGFit(c, win=win)  #, window=win, gFit=gFit)
        if v == 0:
            v, yx, s = findMaxWithGFit(c, win=win +
                                       2)  #, window=win+2, gFit=gFit)
            if v == 0:
                v = U.findMax(c)[0]
        yx = N.add(yx, 0.5)
        #yx += 0.5
    else:
        vzyx = U.findMax(c)
        v = vzyx[0]
        yx = vzyx[-2:]
        s = 2.5

    yx -= center

    if N.alltrue(N.abs(yx) < 1.0) and not acceptOrigin:
        forceSecondPeak = True

    # forceSecondPeak:
    if not forceSecondPeak:
        forceSecondPeak = 0
    for i in range(int(forceSecondPeak)):
        print '%i peak was removed' % (i + 1)  #, sigma: %.2f' % (i+1, s)
        yx += center
        g = gaussianArr2D(c.shape, sigma=s / maskSigmaFact, peakVal=v, orig=yx)
        c = c - g
        #c = mask_gaussian(c, yx[0], yx[1], v, s)
        if gFit:
            v, yx, s = findMaxWithGFit(c, win=win)  #, window=win, gFit=gFit)
            if v == 0:
                v, yx, s = findMaxWithGFit(c, win=win +
                                           2)  #, window=win+2, gFit=gFit)
                if v == 0:
                    v = U.findMax(c)[0]
            yx -= (center - 0.5)
        else:
            vzyx = U.findMax(c)
            v = vzyx[0]

    if not gFit:
        yx = centerOfMass(c, vzyx[-2:]) - center
    if lap is not 'nothing':
        c = paddingValue(c, shapeM + 2)

    if ret == 2:
        return yx, af, bf.conjugate()
    elif ret:
        return v, yx, c
    else:
        return yx, c
Exemple #9
0
def mask_value(arr, zyx, r=2.5, value=0):
    ''' Edit the pixels around zyx to be zero '''
    import imgGeo
    sls = imgGeo.nearbyRegion(arr.shape, zyx, 2 * N.asarray(r) + 1)
    arr[sls] = value
Exemple #10
0
def pointsCutOutND(arr,
                   posList,
                   windowSize=100,
                   sectWise=None,
                   interpolate=True):
    """
    array:       nd array
    posList:     ([(z,)y,x]...)
    windowSize:  scalar (in pixel or as percent < 1.) or ((z,)y,x)
                 if arr.ndim > 2, and len(windowSize) == 2, then
                 cut out section-wise (higher dimensions stay the same)
    sectWise:    conern only XY of windowSize (higher dimensions stay the same)
    interpolate: shift array by subpixel interpolation to adjust center

    return:      list of array centered at each pos in posList
    """
    shape = N.array(arr.shape)
    center = shape / 2.
    # prepare N-dimensional window size
    try:
        len(windowSize)  # seq
        if sectWise:
            windowSize = windowSize[-2:]
        if len(windowSize) != arr.ndim:
            dim = len(windowSize)
            windowSize = tuple(shape[:-dim]) + tuple(windowSize)
    except TypeError:  # scaler
        if windowSize < 1 and windowSize > 0:  # percentage
            w = shape * windowSize
            if sectWise:
                w[:-2] = shape[:-2]
            windowSize = w.astype(N.uint16)
        else:
            windowSize = N.where(shape >= windowSize, windowSize, shape)
            if sectWise:
                windowSize = arr.shape[:-2] + windowSize[-2:]
    windowSize = N.asarray(windowSize)

    # cutout individual position
    arrList = []
    for pos in posList:
        # prepare N-dimensional coordinate
        n = len(pos)
        if n != len(windowSize):
            temp = center.copy()
            center[-n:] = pos
            pos = center

        # calculate idx
        ori = pos - (windowSize / 2.)  # float value
        oidx = N.ceil(ori)  # idx
        subpxl = oidx - ori  # subpixel mod
        if interpolate and N.sometrue(subpxl):  # comit to make shift
            SHIFT = 1
        else:
            SHIFT = 0

        # prepare slice
        # when comitted to make shift, first cut out window+1,
        # then make subpixle shift, and then cutout 1 edge
        slc = [Ellipsis]  # Ellipsis is unnecessary, just in case...
        slc_edge = [slice(1, -1, None)] * arr.ndim
        for d in range(arr.ndim):
            start = oidx[d] - SHIFT
            if start < 0:
                start = 0
                slc_edge[d] = slice(0, slc_edge[d].stop, None)
            stop = oidx[d] + windowSize[d] + SHIFT
            if stop > shape[d]:
                stop = shape[d]
                slc_edge[d] = slice(slc_edge[d].start, shape[d], None)
            slc += [slice(int(start), int(stop), None)]

        # cutout, shift and cutout
        try:
            canvas = arr[slc]
            if SHIFT:
                canvas = U.nd.shift(canvas, subpxl)
                canvas = canvas[slc_edge]
            check = 1
        except IndexError:
            print 'position ', pos, ' was skipped'
            check = 0
            raise
        if check:
            arrList += [N.ascontiguousarray(canvas)]

    return arrList