def S(N):
    primes = MakePrimeList(N)
    squareDivisors = rootGreatestSquareDivisorList(N)
    s = 0
    for n, a in enumerate(primes):
        if isDigitPowTen(n):
            print n, a, s
        ap = a + 1
        den = squareDivisors[ap]
        num = den + 1
        while True:
            bp = ap * num // den
            cp = ap * num * num // (den * den)
            if cp > N: break
            if Miller_Rabin(bp - 1) and Miller_Rabin(cp - 1):
                s += a + bp + cp - 2
            num += 1

        #for b in primes[n+1:]:
        #    if (b+1)*(b+1) >= (N+1)*(a+1):
        #        break
        #    c = (b+1)*(b+1) // (a+1) - 1
        #    if (a+1)*(c+1) == (b+1)*(b+1) and Miller_Rabin(c):
        #        s += a + b + c
    return s
Exemple #2
0
def Euler263():
    primes = MakePrimeList(1000000)
    eps = []
    base = 840
    sexyTriples = 0
    while len(eps) < 4:
        if (base//84) % 1000000 == 0:
            print('base = {:10}   Sexy triples tested : {:6}'.format(base, sexyTriples))
        for n in [base-20, base+20]:
            if (Miller_Rabin(n-9) and
                not Miller_Rabin(n-7) and
                not Miller_Rabin(n-5) and
                Miller_Rabin(n-3) and
                not Miller_Rabin(n-1) and
                not Miller_Rabin(n+1) and
                Miller_Rabin(n+3) and
                not Miller_Rabin(n+5) and
                not Miller_Rabin(n+7) and
                Miller_Rabin(n+9)):
                sexyTriples += 1
                if (isPractical(n-8, primes) and
                    isPractical(n-4, primes) and
                    isPractical(n, primes) and
                    isPractical(n+4, primes) and
                    isPractical(n+8, primes)):
                    eps.append(n)
                    print('{0:10}\n\tSexy-Triple: {1:50}\n\tPracticals:  {2:60}'.format(n, (n-9, n-3, n+3, n+9), (n-8, n-4, n, n+4, n+8)))
        base += 840
    return sum(eps)
def solution():
    Nmax = 10**10
    kSet = set()
    r = int(Nmax**0.5) + 1
    primes = MakePrimeList(int(r**0.5) + 10)
    squareParts = [1] * (r + 2)
    squareFreeParts = [x for x in range(r + 2)]
    for x in range(2, r + 2, 4):
        squareFreeParts[x] //= 2
    for x in range(4, r + 2, 4):
        squareFreeParts[x] //= 4
    for p in primes:
        for x in range(p * p, r + 2, p * p):
            while squareFreeParts[x] > 0 and squareFreeParts[x] % (p * p) == 0:
                squareFreeParts[x] //= p * p
                squareParts[x] *= p
    for m in range(1, r + 1):  # k is at least m^2
        g = gcd(4, m * (m + 1))
        xx = squareParts[m] * squareParts[m + 1]
        y = squareFreeParts[m] * squareFreeParts[m + 1]
        b = 4 // g
        D = y * b
        for z, v in positivePell(D, 10000):
            if (z % 2 == 0 or z < 2 * m + 1): continue
            q = xx * y * v
            x = (z - 1) // 2 - m
            k = m * (x + m + 1) + q
            if k > Nmax: break
            kSet.add(k)
    kVec = list(kSet)
    kVec.sort()
    s = 0
    for k in kVec:
        s += k
    return s
Exemple #4
0
def makeOneSols(n):
    isOneSol = [True] * (n + 1)
    primes = [p for p in MakePrimeList(n) if p % 6 == 1 or p == 3]
    for p in primes:
        for x in range(p, n + 1, p):
            isOneSol[x] = False
    return [x for x in range(1, n + 1) if isOneSol[x]]
Exemple #5
0
 def twoSquares(self, n):
     # Get prime factors
     m = n
     primeFactorization = defaultdict(int)
     if self.N**2 < m:
         self.N = 2*self.N
         self.primes = MakePrimeList(self.N)
         
     for p in self.primes:
         if p*p > m:
             break
         while m%p == 0:
             primeFactorization[p] += 1
             m //= p
     if m != 1:
         primeFactorization[m] += 1
         
     # Calculate how many ways to write n as the sum of two squares
     a0 = primeFactorization[2]
     B = 1
     for p in primeFactorization.keys():
         if p%4 == 1:
             B *= primeFactorization[p] + 1
         if p%4 == 3:
             if primeFactorization[p]%2 == 1:
                 B = 0
                 break
     return B
def not2sRelatives(N):
    primes = MakePrimeList(N)
    relatives2 = defaultdict(bool)
    relatives2[2] = True
    count = 0
    for p in primes:
        count += 1
        if count % 100 == 0:
            print '%d/%d\t%d' % (count, len(primes), p)
        if p > 100 and str(p)[:2] == '10':
            continue
        visited = defaultdict(bool)
        shell = [p]
        while shell:
            new_shell = []
            for q in shell:
                visited[q] = True
                if relatives2[q]:  # q is 2's rel ==> p is 2's rel
                    relatives2[p] = True
                    new_shell = []
                    break
                conns = [x for x in getConnections(q) if x < p]
                conns = [x for x in conns if Miller_Rabin(x)]
                conns = [x for x in conns if not visited[x]]
                new_shell.extend(conns)
            shell = new_shell
            #print shell, visited[101]
    return [p for p in primes if not relatives2[p]]
 def __init__(self, n, MOD):
     self.primes = MakePrimeList(n)
     self.n = n
     self.MOD = MOD
     self.calculateFactorials()
     self.calculateBinomials()
     self.calculateDivisors()
     self.sumDivisors()
Exemple #8
0
class PrimeFactorization:
    primes = MakePrimeList(1000)

    def __init__(self, n):
        if PrimeFactorization.primes[-1] < intRoot(n):
            PrimeFactorization.primes = MakePrimeList(intRoot(n))
        self.pf = defaultdict(int)
        for p in PrimeFactorization.primes:
            if p * p > n: break
            while n % p == 0:
                self.pf[p] += 1
                n //= p
        if n > 1:
            self.pf[n] += 1

    def __mul__(self, other):
        if isinstance(other, PrimeFactorization):
            rhs = other
        else:
            rhs = PrimeFactorization(other)

        ret = PrimeFactorization(1)
        for k in set(rhs.pf.keys()) | set(self.pf.keys()):
            exponent = self.pf[k] + rhs.pf[k]
            if exponent != 0:
                ret.pf[k] = exponent
        return ret

    def __rmul__(self, other):
        lhs = PrimeFactorization(other)
        return self * lhs

    def __div__(self, other):
        if isinstance(other, PrimeFactorization):
            rhs = other
        else:
            rhs = PrimeFactorization(other)
        nrhs = PrimeFactorization(1)
        for k in rhs.pf.keys():
            nrhs.pf[k] = -rhs.pf[k]
        return self * nrhs

    def __rdiv__(self, other):
        lhs = PrimeFactorization(other)
        return lhs / self

    def __str__(self):
        if len(self.pf) == 0:
            return '1'
        keys = list(self.pf.keys())
        keys.sort()
        strs = [
            '{0}^{1}'.format(k, self.pf[k]) for k in keys if self.pf[k] != 0
        ]
        return ' '.join(strs)

    def __repr__(self):
        return str(self)
def Euler315():
    ps = MakePrimeList(2*10**7)
    ret = 0
    n = bisect(ps,10**7)
    print ps[n-1],ps[n],ps[n+1],ps[-1]
    print ps[n:][0]
    for p in ps[n:]:
        ret += digitalRootTransDiff(p)
    return 2*ret
Exemple #10
0
 def __init__(self, N, talk=False):
     self.talk = talk
     self.N = N
     self.r = intRoot(N)
     self.primes = MakePrimeList(self.r)
     self.mobius = Mobius(self.r)
     self.isSquareFree = self.makeSquareFree(self.r)
     self.factCache = {}
     self.sfCache = {}
Exemple #11
0
def Euler342b(N):
    ps = MakePrimeList(int(N**0.5) + 1)
    ret = 0
    for n in xrange(2, N):
        if n % 10000 == 0:
            print n, ret
        if isCube(n * eulerPhi(n, ps)):
            ret += n
    return ret
Exemple #12
0
 def calcMu(self):
     primes = MakePrimeList(self.pMax)
     mu = [1] * (self.pMax + 1)
     for p in primes:
         for x in range(p, len(mu), p):
             mu[x] *= -1
         for x in range(p * p, len(mu), p * p):
             mu[x] = 0
     return mu
Exemple #13
0
def makeMu(l):
    primes = MakePrimeList(l)
    mu = [1] * (l + 1)
    for p in primes:
        for x in range(p, l + 1, p):
            mu[x] *= -1
        for xx in range(p * p, l + 1, p * p):
            mu[xx] = 0
    return mu
Exemple #14
0
def C(n, color='r', plo=False):
    ps = MakePrimeList(n)
    print 'Primes Calculated'
    mu = list(ones(n + 1))
    for p in ps:
        for x in range(p, n + 1, p):
            mu[x] *= -1
        for x in range(p * p, n + 1, p * p):
            mu[x] = 0
    print 'Mobius Function Calculated'
    P = zeros(n + 1, dtype=int)
    N = 0 * P
    for i in range(1, n + 1):
        P[i] = P[i - 1] + (mu[i] == 1)
        N[i] = N[i - 1] + (mu[i] == -1)
    PmN = 100 * P - 99 * N
    NmP = 100 * N - 99 * P
    if plo:
        figure(2)
        plot(PmN, 'b')
        plot(NmP, 'g')
        plot((PmN + NmP) / 2., 'r')
        ans = 0
        alistb = []
        blistb = []
        alistg = []
        blistg = []
        alistr = []
        blistr = []
        for a in range(1, n + 1):
            for b in range(a, n + 1):
                #NN = N[b] - N[a-1]
                #PP = P[b] - P[a-1]
                #if 99*NN <= 100*PP and 99*PP <= 100*NN:
                if PmN[b] >= PmN[a - 1]:
                    alistb.append(a)
                    blistb.append(b + 0.3)
                if NmP[b] >= NmP[a - 1]:
                    #pass
                    alistg.append(a + 0.3)
                    blistg.append(b)
                if PmN[b] >= PmN[a - 1] and NmP[b] >= NmP[a - 1]:
                    alistr.append(a)
                    blistr.append(b)
                    ans += 1
    if plo:
        figure(1)
        plot(alistb, blistb, 'ob')
        plot(alistg, blistg, 'og')
        plot(alistr, blistr, 'or')
    blue = countCriterion(PmN)
    print 'Blue Calculated'
    green = countCriterion(NmP)
    print 'Green Calculated'
    return blue + green - n * (n + 1) / 2
Exemple #15
0
 def __init__(self, n):
     if PrimeFactorization.primes[-1] < intRoot(n):
         PrimeFactorization.primes = MakePrimeList(intRoot(n))
     self.pf = defaultdict(int)
     for p in PrimeFactorization.primes:
         if p * p > n: break
         while n % p == 0:
             self.pf[p] += 1
             n //= p
     if n > 1:
         self.pf[n] += 1
Exemple #16
0
def makeSumPhi(l):
    primes = MakePrimeList(l)
    phi = [x for x in range(l + 1)]
    for p in primes:
        for x in range(p, l + 1, p):
            phi[x] *= (p - 1)
            phi[x] //= p
    # Summatory phi starting from 2
    for x in range(3, l + 1):
        phi[x] += phi[x - 1]
    return phi
Exemple #17
0
def Euler233(N):
    ps = MakePrimeList(max(17, N / (5**3 * 13**2)))
    qs = [q for q in ps if q % 4 == 1]
    pNums, pSums = pNumsSums(qs, N / (5**3 * 13 * 2 * 17))
    patterns = [(52, 0, 0), (17, 1, 0), (10, 2, 0), (7, 3, 0), (3, 2, 1)]
    nums420sum = 0
    for b in patterns:
        for qNum in qNumGen(qs, b, N):
            ix = bisect(pNums, N / qNum)
            if ix > 0:
                nums420sum += qNum * pSums[ix - 1]
    return nums420sum
Exemple #18
0
def Euler245(N):
    primes = MakePrimeList(10**7)
    solutions = set()
    for sf, sfphi in squareFreeGen(N, primes, 1):
        if sfphi+1 == sf: continue
        if (sf - 1) % (sf - sfphi) == 0:
            solutions.add((sf,sfphi))
    sols = list(solutions)
    sols.sort()
    for s in sols:
        print s
    return sum(s[0] for s in solutions)
Exemple #19
0
 def _updatePrimeList(self, N):
     if N <= self.N: return
     self.primes = MakePrimeList(N)
     self.squareFreeNumbers = list(range(N + 1))
     self.squareFreePrimeList = defaultdict(list)
     for p in self.primes:
         pp = p * p
         if p > N: break
         for x in range(p, N + 1, p):
             while self.squareFreeNumbers[x] % pp == 0:
                 self.squareFreeNumbers[x] /= pp
             if self.squareFreeNumbers[x] % p == 0:
                 self.squareFreePrimeList[x].append(p)
Exemple #20
0
def squareFreeNumbers(N):
    primes = MakePrimeList(N)
    sf = [True] * (N + 1)
    numPrime = [0] * (N + 1)
    last = 1
    for p in primes:
        if last // 100000 != p // 100000: print p
        for pp in range(p, N + 1, p):
            numPrime[pp] += 1
        for pp in range(p * p, N + 1, p * p):
            sf[pp] = False
        last = p
    return [(x, numPrime[x]) for x in range(1, N + 1) if sf[x]]
Exemple #21
0
def Euler437(N):
    ps = MakePrimeList(N)
    ret = 0
    count = 0
    for p in ps[1:]:  # ps[1:] excludes 2, the case where 2^-1 does not exist
        if isQuadResidue(5 % p, p):
            r = tonelliShanks(5 % p, p)
            inv2 = pow(2, p - 2, p)
            x1 = (inv2 * (1 + r)) % p
            x2 = (inv2 * (1 - r)) % p
            if isPrimitiveRoot(x1, x2, p, ps):
                ret += p
                count += 1
    return count, ret
Exemple #22
0
def S(n):
    primes = MakePrimeList(n)
    s = [0]*(n+1)
    for p in primes:
        pp = p
        e = 1
        while pp <= n:
            sPrime = sPrimePower(p,e)
            for x in range(pp,n+1,pp):
                if sPrime > s[x]:
                    s[x] = sPrime
            pp *= p
            e += 1
    print s[:min(len(s), 20)]
    return sum(s)
Exemple #23
0
def F(n, d):
    MOD = 10**16 + 61
    # Count digits
    numDigs = 0
    dd = d  # have to preserve d
    while dd > 0:
        numDigs += 1
        dd //= 10

    # Set up dynamic programming
    pow10 = 10**numDigs
    if d == 0: pow10 = 10
    factors = [0] * pow10
    factors[1] = 1
    primes = MakePrimeList(n)

    # Dynamic programing loop
    pLast = 1
    for p in primes:
        if p // 10000 > pLast // 10000:
            print p, factors[:10]
        print p,
        newFactors = [0] * pow10
        exponent = 0
        pp = p
        while pp <= n:
            exponent += n // pp
            pp *= p
        # Exponent is ~10^6 for p=2
        # Need to decouple the exponent loop from the factor loop
        ppCount = [0] * pow10
        for e in range(exponent + 1):
            ppCount[pow(p, e, pow10)] += 1
        print ppCount[:10],
        nulls = 0
        for pp in range(pow10):
            if ppCount[pp] == 0:
                nulls += 1
                continue
            for i in range(pow10):
                newFactors[(i * pp) % pow10] += ppCount[pp] * factors[i]
        print pow10 - nulls
        factors = newFactors
        for i in range(pow10):
            factors[i] %= MOD
        pLast = p

    return factors[d]
Exemple #24
0
def g(N):
    ps = MakePrimeList(int((2*N+2)**(0.5)))
    n = 9
    n_last = 9
    while n <= N:
        #print n
        z = 2*n-1
        if Miller_Rabin(z):
            k = (z-3)/2
        for p in ps:
            if z%p == 0:
                k = (p-3)/2
                break
        n_last = n
        n += k + 1
    return 2*n_last + N
Exemple #25
0
def sumLargestIdempotents(N):
    primes = MakePrimeList(N)
    phi = EulerPhi(N)
    p_facts = primeFactorsLists(N,primes)
    ret = 0
    for x in xrange(1,N+1):
        if x % 10000 == 0:
            print 'Sum:\t%d/%d Complete\t\t%d'%(x,N,ret)
        idempotents = []
        for r in range(len(p_facts[x])+1):
            for c in combinations(p_facts[x],r):
                p = int(prod(c))
                q = x / p
                idempotents.append((p*pow(p,int(phi[q])-1,q))%x)
        #print x,phi[x], max(idempotents), idempotents
        ret += int(max(idempotents))
    return ret
Exemple #26
0
def primeFactorizations(n):
    '''
    Create a list of prime factorizations, where each prime factorizeation is
    a dictionary with primes as keys and exponents as values
    '''
    primes = MakePrimeList(n+1)
    
    fact = [defaultdict(int) for _ in range(n+1)]
        
    for p in primes:
        pp = p
        while pp <= n:
            for x in range(pp,n+1,pp):
                fact[x][p] += 1
            pp *= p
    
    return fact
Exemple #27
0
def P(n):
    primes = MakePrimeList(n)
    isPrime = [False for x in range(n+1)]
    for p in primes: isPrime[p] = True
    primePi = calcPrimePi(n, primes)
    seq = piSequence(n, primePi)
    #print seq
    kMax = len(seq)
    pnk = [0]*(kMax+1)
    pnk[1] = 1
    
    cache = {}
    for pix in range(len(primes)):
        p = primes[pix]
        pNext = n+1
        if pix < len(primes)-1:
            pNext = primes[pix+1]
        pnkSeq = pNK(p, primePi, isPrime, cache, True)
        d = pNext - p - 1
        for k in range(len(pnkSeq)):
            pnk[k] += pnkSeq[k]
            pnk[k+1] += d * pnkSeq[k]
        #print p, pnkSeq, pnk
        
    #for x in range(n,0,-1):
    #    pnkSeq = pNK(x, primePi, isPrime, cache, True)
    #    #print x, pnkSeq
    #    for k in range(len(pnkSeq)):
    #        pnk[k] += pnkSeq[k]
        
        if pix%100000 == 0: print pix, p, pnkSeq
    #print pnk
    pnk[0] -= len(primes)
    pnk[1] -= n
    pnk[1] += len(primes)
    #print pnk
    
    pr, MOD = 1, 10**9+7
    for x in pnk:
        if x != 0:
            pr *= x
            pr %= MOD
    return pr
Exemple #28
0
def Euler500(N, MOD=500500507):  # Num divisors = 2^N
    ps = MakePrimeList(N * sp.log(N) * 2)[:N]
    a = [0] * N
    ans = 1
    # least_ix[y] is the smallest index in a[:] which has value y
    least_ix = [0
                ] * int(2 + sp.log(1 + sp.log(ps[-1]) / sp.log(2)) / sp.log(2))
    for x in xrange(N):
        m = [(ps[least_ix[y]]**(2**y), y)
             for y in range(sum(z != 0 for z in least_ix) + 1)]
        m.sort()
        #if x%1000 == 0:
        #    print x, least_ix, [z[0] for z in m]
        multiplier, y = m[
            0]  # y is the index in least_ix with the smallest multiplier
        least_ix[y] += 1
        ans *= multiplier
        ans %= MOD
    return ans
Exemple #29
0
    def __init__(self, kMax, N, MOD):
        self.kMax = kMax
        self.N = N
        self.R = intRoot(N)
        self.MOD = MOD
        self.primes = MakePrimeList(intRoot(N))
        self.squareFreeParts = self.calculateSquareFreeParts()
        self.sCache = self.initializeSCache()
        self.partialSumCache = {}

        self.chooseCache = {}
        self.calculateBernoulli()
        self.calculateFaulhaber()
        self.sumOverPrimesCache = self.initializeSumOverPrimesCache()
        self.partialSumOverPrimesCache = {}

        self.psCalled = 0
        self.psCacheHits = 0
        self.psopCalled = 0
Exemple #30
0
def S(n, pMOD):
    r = int(n**0.5) + 1
    primes = MakePrimeList(r)
    eligiblePrimePowers = []
    for p in primes:
        pp = 1
        pS = 0
        while pp <= n:
            pS += pp
            if pS % pMOD == 0:
                eligiblePrimePowers.append((pp, p))
            pp *= p
    # Check even multiples of pMOD
    start = (r // (2 * pMOD) + 1) * (2 * pMOD)
    for x in range(start, n + 1, 2 * pMOD):
        if Miller_Rabin(x - 1):
            eligiblePrimePowers.append((x - 1, x - 1))
    eligiblePrimePowers.sort()
    print len(eligiblePrimePowers)