Exemple #1
0
 def measure(self, target: Labelling, predicted) -> float:
     avg_prec = 0.0
     npos = target.positives()
     if (npos == 0):
         return 1.0
     pos_idxs = target.where_positive()
     for i in pos_idxs:
         yi_rank = predicted[i]
         s = sum([1 for j in pos_idxs if predicted[j] <= yi_rank])
         avg_prec += s / yi_rank
     return avg_prec / npos
Exemple #2
0
 def measure(self, target: Labelling, predicted) -> float:
     positives_idxs = target.where_positive()
     return sum([1 / predicted[pi] for pi in positives_idxs]) / sum(
         1 / np.arange(1,
                       target.positives() + 1))
Exemple #3
0
 def measure(self, target: Labelling, predicted) -> float:
     positives_idxs = target.where_positive()
     if (len(positives_idxs) == 0):
         return 0.0
     return max([predicted[pi] for pi in positives_idxs
                 ])  # / len(target) / target.positives()