def hgt_500mb(self): u = self.dataSet.readNCVariable('U') v = self.dataSet.readNCVariable('V') u_corr = wrf.unstaggerX(u) v_corr = wrf.unstaggerY(v) height = wrf.unstaggerZ(self.height) ref_val = 50000. #Switched to Cython #self.u10 = wrf.loglinear_interpolate(u_corr, self.press, ref_val) #self.v10 = wrf.loglinear_interpolate(v_corr, self.press, ref_val) self.u10 = np.array(wrf_cython.loglinear_interpolate(u_corr, self.press, ref_val)) self.v10 = np.array(wrf_cython.loglinear_interpolate(v_corr, self.press, ref_val)) #self.var = wrf.hypsometric(height,self.press, ref_val, self.temp) self.var = np.array(wrf_cython.hypsometric(height, self.press, ref_val, self.temp)) self.var2 = self.var self.varTitle = "500-mb Geopotential Height (m)\n" + self.dataSet.getTime() #Set short variable title for time series self.sTitle = "500-mb Geopotential Height (m)"
def winds_300mb(self): u = self.dataSet.readNCVariable('U') v = self.dataSet.readNCVariable('V') u_corr = wrf.unstaggerX(u) v_corr = wrf.unstaggerY(v) height = wrf.unstaggerZ(self.height) ref_val = 30000. #Switched to Cython #self.u10 = wrf.loglinear_interpolate(u_corr, self.press, ref_val) #self.v10 = wrf.loglinear_interpolate(v_corr, self.press, ref_val) self.u10 = np.array(wrf_cython.loglinear_interpolate(u_corr, self.press, ref_val)) self.v10 = np.array(wrf_cython.loglinear_interpolate(v_corr, self.press, ref_val)) var1 = wrf.get_bulk_wind(self.u10,self.v10) self.var = wrf.convertWind_MStoKT(var1) #self.var2 = wrf.hypsometric(height, self.press, ref_val, self.temp) self.var2 = np.array(wrf_cython.hypsometric(height, self.press, ref_val, self.temp)) self.varTitle = "300-mb Wind\n" + self.dataSet.getTime() #Set short variable title for time series self.sTitle = "300-mb Wind"
def temp_500mb(self): u = self.dataSet.readNCVariable('U') v = self.dataSet.readNCVariable('V') u_corr = wrf.unstaggerX(u) v_corr = wrf.unstaggerY(v) height = wrf.unstaggerZ(self.height) ref_val = 50000. #Switched to Cython #var1 = wrf.loglinear_interpolate(self.temp, self.press, ref_val) #self.u10 = wrf.loglinear_interpolate(u_corr, self.press, ref_val) #self.v10 = wrf.loglinear_interpolate(v_corr, self.press, ref_val) var1 = np.array(wrf_cython.loglinear_interpolate(self.temp, self.press, ref_val)) self.u10 = np.array(wrf_cython.loglinear_interpolate(u_corr, self.press, ref_val)) self.v10 = np.array(wrf_cython.loglinear_interpolate(v_corr, self.press, ref_val)) self.var = wrf.convertT_KtoC(var1) #self.var2 = wrf.hypsometric(height, self.press, ref_val, self.temp) self.var2 = np.array(wrf_cython.hypsometric(height, self.press, ref_val, self.temp)) self.varTitle = "500-mb Temperature ($^{\circ}$C)\n" + self.dataSet.getTime() #Set short variable title for time series self.sTitle = "500-mb Temperature ($^{\circ}$C)"
def vort_500mb(self): u = self.dataSet.readNCVariable('U') v = self.dataSet.readNCVariable('V') u_corr = wrf.unstaggerX(u) v_corr = wrf.unstaggerY(v) height = wrf.unstaggerZ(self.height) ref_val = 50000. #Switched to Cython #self.u10 = wrf.loglinear_interpolate(u_corr, self.press, ref_val) #self.v10 = wrf.loglinear_interpolate(v_corr, self.press, ref_val) self.u10 = np.array(wrf_cython.loglinear_interpolate(u_corr, self.press, ref_val)) self.v10 = np.array(wrf_cython.loglinear_interpolate(v_corr, self.press, ref_val)) self.var = wrf.rel_vort(self.u10, self.v10, self.dataSet.dx[self.dataSet.currentGrid-1], self.dataSet.dy[self.dataSet.currentGrid-1]) #self.var2 = wrf.hypsometric(height, self.press, ref_val, self.temp) self.var2 = np.array(wrf_cython.hypsometric(height, self.press, ref_val, self.temp)) self.varTitle = "500-mb Relative Vorticity ($10^{-5}$ $s^{-1}$)\n" +\ self.dataSet.getTime() #Set short variable title for time series self.sTitle = "500-mb Relative Vorticity ($10^{-5}$ $s^{-1}$)"