Exemple #1
0
def test_diffusion_only_2d(data0=np.array([[0, 0, 0], [0, 1., 0], [0, 0, 0]]),
                           mu_coeff=(.1, .1),
                           n_steps=1):
    # Arrange
    options = Options(non_zero_mu_coeff=True)
    boundary_conditions = tuple([Periodic()] * 2)
    advectee = ScalarField(data0, options.n_halo, boundary_conditions)
    advector = VectorField(data=(np.zeros(
        (data0.shape[0] + 1, data0.shape[1])),
                                 np.zeros(
                                     (data0.shape[0], data0.shape[1] + 1))),
                           halo=options.n_halo,
                           boundary_conditions=boundary_conditions)
    solver = Solver(stepper=Stepper(options=options, grid=data0.shape),
                    advector=advector,
                    advectee=advectee)

    # Act
    solver.advance(n_steps=n_steps, mu_coeff=mu_coeff)

    # Assert
    data1 = solver.advectee.get()
    np.testing.assert_almost_equal(actual=np.sum(data1), desired=np.sum(data0))
    assert np.amax(data0) > np.amax(data1)
    assert np.amin(data1) >= 0
    assert np.count_nonzero(data1) == 5
Exemple #2
0
def test_double_pass_donor_cell(n_iters):
    courant = .5

    options = Options(n_iters=n_iters, DPDC=True, nonoscillatory=True)
    state = np.array([0, 1, 0], dtype=options.dtype)
    boundary_conditions = (Periodic(),)

    mpdata = Solver(
        stepper=Stepper(options=options, n_dims=state.ndim, non_unit_g_factor=False),
        advectee=ScalarField(
            state,
            halo=options.n_halo,
            boundary_conditions=boundary_conditions
        ),
        advector=VectorField(
            (np.full(state.shape[0] + 1, courant, dtype=options.dtype),),
            halo=options.n_halo,
            boundary_conditions=boundary_conditions
        )
    )
    steps = 1

    conserved = np.sum(mpdata.advectee.get())
    mpdata.advance(steps)

    assert np.sum(mpdata.advectee.get()) == conserved
    def __init__(self, nz, dt, advector_of_t, advectee_of_zZ_at_t0,
                 g_factor_of_zZ, mpdata_settings):
        self.t = 0
        self.dt = dt
        self.advector_of_t = advector_of_t

        grid = (nz, )
        options = Options(n_iters=mpdata_settings['n_iters'],
                          infinite_gauge=mpdata_settings['iga'],
                          flux_corrected_transport=mpdata_settings['fct'],
                          third_order_terms=mpdata_settings['tot'])
        stepper = Stepper(options=options, grid=grid, non_unit_g_factor=True)
        bcs = (ExtrapolatedBoundaryCondition(), )
        g_factor = ScalarField(data=g_factor_of_zZ(
            arakawa_c.z_scalar_coord(grid)),
                               halo=options.n_halo,
                               boundary_conditions=bcs)
        advector = VectorField(data=(np.full(nz + 1, advector_of_t(0)), ),
                               halo=options.n_halo,
                               boundary_conditions=bcs)
        self.advectee = ScalarField(data=advectee_of_zZ_at_t0(
            arakawa_c.z_scalar_coord(grid)),
                                    halo=options.n_halo,
                                    boundary_conditions=bcs)
        self.solver = Solver(stepper=stepper,
                             advectee=self.advectee,
                             advector=advector,
                             g_factor=g_factor)
Exemple #4
0
def test_upwind(shape, ij0, out, courant_number):
    value = 44
    scalar_field_init = np.zeros(shape)
    scalar_field_init[ij0] = value

    vector_field_init = (
        np.full((shape[0] + 1, shape[1]), courant_number[0]),
        np.full((shape[0], shape[1] + 1), courant_number[1])
    )
    options = Options(n_iters=1)

    bcs = (Periodic(), Periodic())
    advectee = ScalarField(scalar_field_init, halo=options.n_halo, boundary_conditions=bcs)
    advector = VectorField(vector_field_init, halo=options.n_halo, boundary_conditions=bcs)

    mpdata = Solver(
        stepper=Stepper(options=options, grid=shape, n_threads=1),
        advector=advector,
        advectee=advectee
    )
    mpdata.advance(n_steps=1)

    np.testing.assert_array_equal(
        mpdata.advectee.get(),
        out
    )
Exemple #5
0
class MPDATA_1D:
    def __init__(
        self,
        nz,
        dt,
        advector_of_t,
        advectee_of_zZ_at_t0,
        g_factor_of_zZ,
        mpdata_settings,
    ):
        self.__t = 0
        self.dt = dt
        self.advector_of_t = advector_of_t

        grid = (nz, )
        options = Options(
            n_iters=mpdata_settings["n_iters"],
            infinite_gauge=mpdata_settings["iga"],
            nonoscillatory=mpdata_settings["fct"],
            third_order_terms=mpdata_settings["tot"],
        )
        stepper = Stepper(options=options, grid=grid, non_unit_g_factor=True)
        bcs = (Extrapolated(), )
        zZ_scalar = arakawa_c.z_scalar_coord(grid) / nz
        g_factor = ScalarField(
            data=g_factor_of_zZ(zZ_scalar),
            halo=options.n_halo,
            boundary_conditions=bcs,
        )
        advector = VectorField(
            data=(np.full(nz + 1, advector_of_t(0)), ),
            halo=options.n_halo,
            boundary_conditions=bcs,
        )
        self.advectee = ScalarField(
            data=advectee_of_zZ_at_t0(zZ_scalar),
            halo=options.n_halo,
            boundary_conditions=bcs,
        )
        self.solver = Solver(
            stepper=stepper,
            advectee=self.advectee,
            advector=advector,
            g_factor=g_factor,
        )

    @property
    def advector(self):
        return self.solver.advector.get_component(0)

    def update_advector_field(self):
        self.__t += 0.5 * self.dt
        self.advector[:] = self.advector_of_t(self.__t)
        np.testing.assert_array_less(np.abs(self.advector), 1)
        self.__t += 0.5 * self.dt

    def __call__(self):
        self.solver.advance(1)
Exemple #6
0
def test_single_timestep(options):
    # Arrange
    stepper = Stepper(options=options, grid=GRID, non_unit_g_factor=True)
    advector = nondivergent_vector_field_2d(GRID, SIZE, TIMESTEP,
                                            stream_function, options.n_halo)
    g_factor = ScalarField(RHOD.astype(dtype=options.dtype),
                           halo=options.n_halo,
                           boundary_conditions=(Periodic(), Periodic()))
    mpdatas = {}
    for key, value in VALUES.items():
        advectee = ScalarField(np.full(GRID, value, dtype=options.dtype),
                               halo=options.n_halo,
                               boundary_conditions=(Periodic(), Periodic()))
        mpdatas[key] = Solver(stepper=stepper,
                              advectee=advectee,
                              advector=advector,
                              g_factor=g_factor)

    # Act
    for mpdata in mpdatas.values():
        mpdata.advance(n_steps=1)

    # Assert
    for value in mpdatas.values():
        assert np.isfinite(value.advectee.get()).all()
def test_timing_2d(benchmark,
                   options,
                   dtype,
                   grid_static_str,
                   concurrency_str,
                   plot=False):
    if grid_static_str == "static":
        grid_static = True
    elif grid_static_str == "dynamic":
        grid_static = False
    else:
        raise ValueError()

    if concurrency_str == "serial":
        numba.set_num_threads(1)
    else:
        numba.set_num_threads(numba.config.NUMBA_NUM_THREADS)

    setup = Setup(n_rotations=6)
    _, __, z = from_pdf_2d(setup.pdf,
                           xrange=setup.xrange,
                           yrange=setup.yrange,
                           gridsize=setup.grid)

    C = (-.5, .25)
    grid = z.shape
    advector_data = [
        np.full((grid[0] + 1, grid[1]), C[0], dtype=options.dtype),
        np.full((grid[0], grid[1] + 1), C[1], dtype=options.dtype)
    ]
    advector = VectorField(advector_data,
                           halo=options.n_halo,
                           boundary_conditions=(PeriodicBoundaryCondition(),
                                                PeriodicBoundaryCondition()))
    advectee = ScalarField(data=z.astype(dtype=options.dtype),
                           halo=options.n_halo,
                           boundary_conditions=(PeriodicBoundaryCondition(),
                                                PeriodicBoundaryCondition()))
    if grid_static:
        stepper = Stepper(options=options, grid=grid)
    else:
        stepper = Stepper(options=options, n_dims=2)
    solver = Solver(stepper=stepper, advectee=advectee, advector=advector)

    def set_z():
        solver.advectee.get()[:] = z

    benchmark.pedantic(solver.advance, (setup.nt, ),
                       setup=set_z,
                       warmup_rounds=1,
                       rounds=3)

    if options.n_iters == 1 or options.flux_corrected_transport:
        np.testing.assert_almost_equal(np.amin(solver.advectee.get()), h0)
    assert np.amax(solver.advectee.get()) < 10 * h

    if plot:
        pyplot.imshow(solver.advectee.get())
        pyplot.colorbar()
        pyplot.show()
    def __init__(self, *, fields,
                 n_iters=2, infinite_gauge=True,
                 flux_corrected_transport=True, third_order_terms=False):
        self.grid = fields.g_factor.shape
        self.asynchronous = False
        self.thread: (Thread, None) = None

        options = Options(
            n_iters=n_iters,
            infinite_gauge=infinite_gauge,
            flux_corrected_transport=flux_corrected_transport,
            third_order_terms=third_order_terms
        )
        disable_threads_if_needed = {}
        if not conf.JIT_FLAGS['parallel']:
            disable_threads_if_needed['n_threads'] = 1

        stepper = Stepper(options=options, grid=self.grid, non_unit_g_factor=True, **disable_threads_if_needed)

        # CFL condition
        for d in range(len(fields.advector)):
            np.testing.assert_array_less(np.abs(fields.advector[d]), 1)

        self.advector = fields.advector
        advector_impl = VectorField(fields.advector, halo=options.n_halo,
                                    boundary_conditions=(PeriodicBoundaryCondition(), PeriodicBoundaryCondition()))

        self.g_factor = fields.g_factor
        g_factor_impl = ScalarField(fields.g_factor.astype(dtype=options.dtype), halo=options.n_halo,
                               boundary_conditions=(PeriodicBoundaryCondition(), PeriodicBoundaryCondition()))
        self.mpdatas = {}
        for k, v in fields.advectees.items():
            advectee = ScalarField(np.full(self.grid, v, dtype=options.dtype), halo=options.n_halo,
                                   boundary_conditions=(PeriodicBoundaryCondition(), PeriodicBoundaryCondition()))
            self.mpdatas[k] = Solver(stepper=stepper, advectee=advectee, advector=advector_impl, g_factor=g_factor_impl)
def test_timing_2d(benchmark,
                   options,
                   grid_static_str,
                   num_threads,
                   plot=False):
    if grid_static_str == "static":
        grid_static = True
    elif grid_static_str == "dynamic":
        grid_static = False
    else:
        raise ValueError()

    numba.set_num_threads(num_threads)

    settings = Settings(n_rotations=6)
    _, __, psi = from_pdf_2d(settings.pdf,
                             xrange=settings.xrange,
                             yrange=settings.yrange,
                             gridsize=settings.grid)

    advectee = ScalarField(data=psi.astype(dtype=options.dtype),
                           halo=options.n_halo,
                           boundary_conditions=(Periodic(), Periodic()))

    advector = VectorField(data=(np.full(
        (advectee.grid[0] + 1, advectee.grid[1]),
        COURANT[0],
        dtype=options.dtype),
                                 np.full(
                                     (advectee.grid[0], advectee.grid[1] + 1),
                                     COURANT[1],
                                     dtype=options.dtype)),
                           halo=options.n_halo,
                           boundary_conditions=(Periodic(), Periodic()))

    if grid_static:
        stepper = Stepper(options=options, grid=psi.shape)
    else:
        stepper = Stepper(options=options, n_dims=2)
    solver = Solver(stepper=stepper, advectee=advectee, advector=advector)

    def set_z():
        solver.advectee.get()[:] = psi

    benchmark.pedantic(solver.advance, (settings.n_steps, ),
                       setup=set_z,
                       warmup_rounds=1,
                       rounds=3)

    if options.n_iters == 1 or options.nonoscillatory:
        np.testing.assert_almost_equal(np.amin(solver.advectee.get()), H_0)
    assert np.amax(solver.advectee.get()) < 10 * H

    if plot:
        pyplot.imshow(solver.advectee.get())
        pyplot.colorbar()
        pyplot.show()
Exemple #10
0
    def make_condensational_growth_solver(nr, r_min, r_max, GC_max,
                                          grid_layout, psi_coord, pdf_of_r,
                                          drdt_of_r, opts: Options):
        # psi = psi(p)
        dp_dr = psi_coord.dx_dr
        dx_dr = grid_layout.dx_dr

        xh, dx = np.linspace(grid_layout.x(r_min),
                             grid_layout.x(r_max),
                             nr + 1,
                             retstep=True)
        rh = grid_layout.r(xh)

        x = np.linspace(xh[0] + dx / 2, xh[-1] - dx / 2, nr)
        r = grid_layout.r(x)

        def pdf_of_r_over_psi(r):
            return pdf_of_r(r) / psi_coord.dx_dr(r)

        psi = discretised_analytical_solution(rh,
                                              pdf_of_r_over_psi,
                                              midpoint_value=True,
                                              r=r)

        dp_dt = drdt_of_r(rh) * dp_dr(rh)
        G = dp_dr(r) / dx_dr(r)

        # C = dr_dt * dt / dr
        # GC = dp_dr / dx_dr * dr_dt * dt / dr =
        #        \       \_____ / _..____/
        #         \_____.._____/    \_ dt/dx
        #               |
        #             dp_dt

        dt = GC_max * dx / np.amax(dp_dt)
        GCh = dp_dt * dt / dx

        # CFL condition
        np.testing.assert_array_less(np.abs(GCh), 1)

        g_factor = ScalarField(
            G.astype(dtype=opts.dtype),
            halo=opts.n_halo,
            boundary_conditions=(ExtrapolatedBoundaryCondition(), ))
        state = ScalarField(
            psi.astype(dtype=opts.dtype),
            halo=opts.n_halo,
            boundary_conditions=(ConstantBoundaryCondition(0), ))
        GC_field = VectorField(
            [GCh.astype(dtype=opts.dtype)],
            halo=opts.n_halo,
            boundary_conditions=(ConstantBoundaryCondition(0), ))
        stepper = Stepper(options=opts, n_dims=1, non_unit_g_factor=True)
        return (Solver(stepper=stepper,
                       g_factor=g_factor,
                       advectee=state,
                       advector=GC_field), r, rh, dx, dt, g_factor)
Exemple #11
0
    def __init__(
        self,
        nz,
        dt,
        advector_of_t,
        advectee_of_zZ_at_t0,
        g_factor_of_zZ,
        mpdata_settings,
    ):
        self.__t = 0
        self.dt = dt
        self.advector_of_t = advector_of_t

        grid = (nz, )
        options = Options(
            n_iters=mpdata_settings["n_iters"],
            infinite_gauge=mpdata_settings["iga"],
            nonoscillatory=mpdata_settings["fct"],
            third_order_terms=mpdata_settings["tot"],
        )
        stepper = Stepper(options=options, grid=grid, non_unit_g_factor=True)
        bcs = (Extrapolated(), )
        zZ_scalar = arakawa_c.z_scalar_coord(grid) / nz
        g_factor = ScalarField(
            data=g_factor_of_zZ(zZ_scalar),
            halo=options.n_halo,
            boundary_conditions=bcs,
        )
        advector = VectorField(
            data=(np.full(nz + 1, advector_of_t(0)), ),
            halo=options.n_halo,
            boundary_conditions=bcs,
        )
        self.advectee = ScalarField(
            data=advectee_of_zZ_at_t0(zZ_scalar),
            halo=options.n_halo,
            boundary_conditions=bcs,
        )
        self.solver = Solver(
            stepper=stepper,
            advectee=self.advectee,
            advector=advector,
            g_factor=g_factor,
        )
Exemple #12
0
def test_shared_advector():
    n_x = 100
    arr = np.zeros(n_x)
    opt1 = Options(n_iters=2, DPDC=True)
    opt2 = Options(n_iters=2)
    b_c = (Periodic(),)

    halo = opt1.n_halo
    assert opt2.n_halo == halo

    advector = VectorField(data=(np.zeros(n_x + 1),), halo=halo, boundary_conditions=b_c)
    _ = Solver(
        stepper=Stepper(options=opt1, grid=(n_x,)),
        advectee=ScalarField(data=arr, halo=halo, boundary_conditions=b_c),
        advector=advector
    )
    solver = Solver(
        stepper=Stepper(options=opt2, grid=(n_x,)),
        advectee=ScalarField(data=arr, halo=halo, boundary_conditions=b_c),
        advector=advector
    )
    solver.advance(1)
Exemple #13
0
def test_upwind_1d():
    state = np.array([0, 1, 0])
    courant = 1

    options = Options(n_iters=1)
    mpdata = Solver(
        stepper=Stepper(options=options, n_dims=len(state.shape), non_unit_g_factor=False),
        advectee=ScalarField(
            state.astype(options.dtype),
            halo=options.n_halo,
            boundary_conditions=(Periodic(),)
        ),
        advector=VectorField(
            (np.full(state.shape[0] + 1, courant, dtype=options.dtype),),
            halo=options.n_halo,
            boundary_conditions=(Periodic(),)
        )
    )
    n_steps = 5

    conserved = np.sum(mpdata.advectee.get())
    mpdata.advance(n_steps)

    assert np.sum(mpdata.advectee.get()) == conserved
Exemple #14
0
        "output": case_data[8]
    }
    # Arrange
    data = case["input"].reshape((case["nx"], case["ny"]))
    courant = [case["Cx"], case["Cy"]]
    options = Options(n_iters=case["ni"], dimensionally_split=case["dimsplit"])
    grid = data.shape
    advector_data = [
        np.full((grid[0] + 1, grid[1]), courant[0], dtype=options.dtype),
        np.full((grid[0], grid[1] + 1), courant[1], dtype=options.dtype)
    ]
    bcs = (Periodic(), Periodic())
    advector = VectorField(advector_data,
                           halo=options.n_halo,
                           boundary_conditions=bcs)
    advectee = ScalarField(data=data.astype(dtype=options.dtype),
                           halo=options.n_halo,
                           boundary_conditions=bcs)
    stepper = Stepper(options=options, grid=grid, non_unit_g_factor=False)
    mpdata = Solver(stepper=stepper, advectee=advectee, advector=advector)
    sut = mpdata

    # Act
    sut.advance(n_steps=case["nt"])

    # Assert
    np.testing.assert_almost_equal(sut.advectee.get(),
                                   case["output"].reshape(
                                       case["nx"], case["ny"]),
                                   decimal=4)
Exemple #15
0
    def __init__(self,
                 *,
                 advectees,
                 stream_function,
                 rhod_of_zZ,
                 dt,
                 grid,
                 size,
                 displacement,
                 n_iters=2,
                 infinite_gauge=True,
                 nonoscillatory=True,
                 third_order_terms=False):
        self.grid = grid
        self.size = size
        self.dt = dt
        self.stream_function = stream_function
        self.stream_function_time_dependent = (
            "t" in inspect.signature(stream_function).parameters)
        self.asynchronous = False
        self.thread: (Thread, None) = None
        self.displacement = displacement
        self.t = 0

        options = Options(
            n_iters=n_iters,
            infinite_gauge=infinite_gauge,
            nonoscillatory=nonoscillatory,
            third_order_terms=third_order_terms,
        )
        disable_threads_if_needed = {}
        if not conf.JIT_FLAGS["parallel"]:
            disable_threads_if_needed["n_threads"] = 1

        stepper = Stepper(options=options,
                          grid=self.grid,
                          non_unit_g_factor=True,
                          **disable_threads_if_needed)

        advector_impl = VectorField(
            (
                np.full((grid[0] + 1, grid[1]), np.nan),
                np.full((grid[0], grid[1] + 1), np.nan),
            ),
            halo=options.n_halo,
            boundary_conditions=(Periodic(), Periodic()),
        )

        g_factor = make_rhod(self.grid, rhod_of_zZ)
        g_factor_impl = ScalarField(
            g_factor.astype(dtype=options.dtype),
            halo=options.n_halo,
            boundary_conditions=(Periodic(), Periodic()),
        )

        self.g_factor_vec = (
            rhod_of_zZ(zZ=x_vec_coord(self.grid)[-1]),
            rhod_of_zZ(zZ=z_vec_coord(self.grid)[-1]),
        )
        self.mpdatas = {}
        for k, v in advectees.items():
            advectee_impl = ScalarField(
                np.asarray(v, dtype=options.dtype),
                halo=options.n_halo,
                boundary_conditions=(Periodic(), Periodic()),
            )
            self.mpdatas[k] = Solver(
                stepper=stepper,
                advectee=advectee_impl,
                advector=advector_impl,
                g_factor=g_factor_impl,
            )