def stepup(self,pars,x): """ A fit function. """ return 0.5*SpecfitFuns.upstep(pars,x)
def stepUp(self, pars, x): """ Error function like. """ return 0.5 * SpecfitFuns.upstep(pars, x)
self.connect(self.dismissButton, qt.SIGNAL("clicked()"), self.reject) self.connect(self.okButton, qt.SIGNAL("clicked()"), self.accept) def getParameters(self): parametersDict = self.parametersWidget.getParameters() return parametersDict def setParameters(self, ddict): return self.parametersWidget.setParameters(ddict) if __name__ == "__main__": app = qt.QApplication([]) if len(sys.argv) > 1: from PyMca import specfilewrapper as specfile sf = specfile.Specfile(sys.argv[1]) scan = sf[0] data = scan.data() energy = data[0, :] spectrum = data[1, :] w = XASNormalizationDialog(None, spectrum, energy=energy) else: from PyMca import SpecfitFuns noise = numpy.random.randn(1500.) x = 8000. + numpy.arange(1500.) y = SpecfitFuns.upstep([100, 8500., 50], x) w = XASNormalizationDialog(None, y + numpy.sqrt(y) * noise, energy=x) ret = w.exec_() if ret: print(w.getParameters())