Exemple #1
0
        self._lastWidgetId = wid
        self._widgetDict[wid] = widget
        widget.show()

if __name__ == "__main__":
    try:
        #this is to add the 3D buttons ...
        from PyMca5 import Object3D
    except:
        #not a big deal for this tests
        pass
    app = qt.QApplication(sys.argv)
    w = PyMcaNexusWidget()
    if 0:
        w.setFile(sys.argv[1])
    else:
        from PyMca5.PyMcaCore import NexusDataSource
        dataSource = NexusDataSource.NexusDataSource(sys.argv[1:])
        w.setDataSource(dataSource)
    def addSelection(sel):
        print(sel)
    def removeSelection(sel):
        print(sel)
    def replaceSelection(sel):
        print(sel)
    w.show()
    w.sigAddSelection.connect(addSelection)
    w.sigRemoveSelection.connect(removeSelection)
    w.sigReplaceSelection.connect(replaceSelection)
    sys.exit(app.exec_())
Exemple #2
0
    def loadFileList(self, filelist, selection, scanlist=None):
        """
        loadFileList(self, filelist, y, scanlist=None, monitor=None, x=None)
        filelist is the list of file names belonging to the stack
        selection is a dictionary with the keys x, y, m.
        x        is the path to the x data (the channels) in the spectrum,
                 without the first level "directory". It is unused (for now).
        y        is the path to the 1D data (the counts) in the spectrum,
                 without the first level "directory"
        m        is the path to the normalizing data (I0 or whatever)
                 without the first level "directory".
        scanlist is the list of first level "directories" containing the 1D data
                 Example: The actual path has the form:
                 /whatever1/whatever2/counts
                 That means scanlist = ["/whatever1"]
                 and selection['y'] = "/whatever2/counts"
        """
        _logger.info("filelist = %s", filelist)
        _logger.info("selection = %s", selection)
        _logger.info("scanlist = %s", scanlist)
        # all the files in the same source
        hdfStack = NexusDataSource.NexusDataSource(filelist)

        # if there is more than one file, it is assumed all the files have
        # the same structure.
        tmpHdf = hdfStack._sourceObjectList[0]
        entryNames = []
        for key in tmpHdf["/"].keys():
            try:
                if isinstance(tmpHdf["/" + key], h5py.Group):
                    entryNames.append(key)
            except KeyError:
                _logger.info("Broken link with key? <%s>" % key)

        # built the selection in terms of HDF terms
        # for the time being
        xSelectionList = selection.get('x', None)
        if xSelectionList == []:
            xSelectionList = None
        if xSelectionList is not None:
            if type(xSelectionList) != type([]):
                xSelectionList = [xSelectionList]
            if len(xSelectionList):
                xSelection = xSelectionList[0]
            else:
                xSelection = None
        else:
            xSelection = None
        # only one y is taken
        ySelection = selection['y']
        if type(ySelection) == type([]):
            ySelectionList = list(ySelection)
            ySelection = ySelection[0]
        else:
            ySelectionList = [ySelection]

        # monitor selection
        mSelection = selection.get('m', None)
        if mSelection not in [None, []]:
            if type(mSelection) != type([]):
                mSelection = [mSelection]
        if type(mSelection) == type([]):
            if len(mSelection):
                mSelection = mSelection[0]
            else:
                mSelection = None
        else:
            mSelection = None

        USE_JUST_KEYS = False
        # deal with the pathological case where the scanlist corresponds
        # to a selected top level dataset
        if len(entryNames) == 0:
            if scanlist is not None:
                if (ySelection in scanlist) or \
                   (xSelection in scanlist) or \
                   (mSelection in scanlist):
                    scanlist = None
                    USE_JUST_KEYS = True
            else:
                USE_JUST_KEYS = True
        elif len(entryNames) == 1:
            # deal with the SOLEIL case of one entry but with different name
            # in different files
            USE_JUST_KEYS = True
        elif scanlist in [None, []]:
            USE_JUST_KEYS = True
        if USE_JUST_KEYS:
            # if the scanlist is None, it is assumed we are interested on all
            # the scans containing the selection, not that all the scans
            # contain the selection.
            scanlist = []
            if 0:
                JUST_KEYS = False
                #expect same entry names in the files
                #Unfortunately this does not work for SOLEIL
                for entry in entryNames:
                    path = "/" + entry + ySelection
                    dirname = posixpath.dirname(path)
                    base = posixpath.basename(path)
                    try:
                        file_entry = tmpHdf[dirname]
                        if base in file_entry.keys():
                            scanlist.append(entry)
                    except:
                        pass
            else:
                JUST_KEYS = True
                #expect same structure in the files even if the
                #names are different (SOLEIL ...)
                if len(entryNames):
                    i = 0
                    for entry in entryNames:
                        i += 1
                        path = "/" + entry + ySelection
                        dirname = posixpath.dirname(path)
                        base = posixpath.basename(path)
                        try:
                            file_entry = tmpHdf[dirname]
                            if hasattr(file_entry, "keys"):
                                if base in file_entry.keys():
                                    # this is the case of a selection inside a group
                                    scanlist.append("1.%d" % i)
                        except KeyError:
                            _logger.warning("%s not in file, ignoring.",
                                            dirname)
                    if not len(scanlist):
                        if not ySelection.startswith("/"):
                            path = "/" + ySelection
                        else:
                            path = ySelection
                        dirname = posixpath.dirname(path)
                        base = posixpath.basename(path)
                        try:
                            if dirname in tmpHdf["/"]:
                                # this is the case of a dataset at top plevel
                                # or having given the complete path
                                if base in tmpHdf[dirname]:
                                    JUST_KEYS = False
                                    scanlist.append("")
                            elif base in file_entry.keys():
                                JUST_KEYS = False
                                scanlist.append("")
                        except:
                            #it will crash later on
                            pass
                else:
                    JUST_KEYS = False
                    scanlist.append("")
        else:
            try:
                number, order = [int(x) for x in scanlist[0].split(".")]
                JUST_KEYS = True
            except:
                JUST_KEYS = False
            if not JUST_KEYS:
                for scan in scanlist:
                    if scan.startswith("/"):
                        t = scan[1:]
                    else:
                        t = scan
                    if t not in entryNames:
                        raise ValueError("Entry %s not in file" % scan)

        nFiles = len(filelist)
        nScans = len(scanlist)
        if JUST_KEYS:
            if not nScans:
                raise IOError("No entry contains the required data")

        _logger.debug("Retained number of files = %d", nFiles)
        _logger.debug("Retained number of scans = %d", nScans)

        # Now is to decide the number of mca ...
        # I assume all the scans contain the same number of mca
        if JUST_KEYS:
            path = "/" + entryNames[int(scanlist[0].split(".")[-1]) -
                                    1] + ySelection
            if mSelection is not None:
                mpath = "/" + entryNames[int(scanlist[0].split(".")[-1]) -
                                         1] + mSelection
            if xSelectionList is not None:
                xpathList = []
                for xSelection in xSelectionList:
                    xpath = "/" + entryNames[int(scanlist[0].split(".")[-1]) -
                                             1] + xSelection
                    xpathList.append(xpath)
        else:
            path = scanlist[0] + ySelection
            if mSelection is not None:
                mpath = scanlist[0] + mSelection
            if xSelectionList is not None:
                xpathList = []
                for xSelection in xSelectionList:
                    xpath = scanlist[0] + xSelection
                    xpathList.append(xpath)

        yDataset = tmpHdf[path]
        if (self.__dtype is None) or (mSelection is not None):
            self.__dtype = yDataset.dtype
            if self.__dtype in [numpy.int16, numpy.uint16]:
                self.__dtype = numpy.float32
            elif self.__dtype in [numpy.int32, numpy.uint32]:
                if mSelection:
                    self.__dtype = numpy.float32
                else:
                    self.__dtype = numpy.float64
            elif self.__dtype not in [
                    numpy.float16, numpy.float32, numpy.float64
            ]:
                # Some datasets form CLS (origin APS?) arrive as data format
                # equal to ">u2" and are not triggered as integer types
                _logger.debug("Not basic dataset type %s", self.__dtype)
                if ("%s" % self.__dtype).endswith("2"):
                    self.__dtype = numpy.float32
                else:
                    if mSelection:
                        self.__dtype = numpy.float32
                    else:
                        self.__dtype = numpy.float64

        # figure out the shape of the stack
        shape = yDataset.shape
        mcaIndex = selection.get('index', len(shape) - 1)
        if mcaIndex == -1:
            mcaIndex = len(shape) - 1
        _logger.debug("mcaIndex = %d", mcaIndex)
        considerAsImages = False
        dim0, dim1, mcaDim = self.getDimensions(nFiles,
                                                nScans,
                                                shape,
                                                index=mcaIndex)
        try:
            if self.__dtype in [numpy.float32, numpy.int32]:
                bytefactor = 4
            elif self.__dtype in [numpy.int16, numpy.uint16]:
                bytefactor = 2
            elif self.__dtype in [numpy.int8, numpy.uint8]:
                bytefactor = 1
            else:
                bytefactor = 8

            neededMegaBytes = nFiles * dim0 * dim1 * (mcaDim * bytefactor /
                                                      (1024 * 1024.))
            _logger.info("Using %d bytes per item" % bytefactor)
            _logger.info("Needed %d Megabytes" % neededMegaBytes)
            physicalMemory = None
            if hasattr(PhysicalMemory, "getAvailablePhysicalMemoryOrNone"):
                physicalMemory = PhysicalMemory.getAvailablePhysicalMemoryOrNone(
                )
            if not physicalMemory:
                physicalMemory = PhysicalMemory.getPhysicalMemoryOrNone()
            else:
                _logger.info("Available physical memory %.1f GBytes" % \
                             (physicalMemory/(1024*1024*1024.)))
            if physicalMemory is None:
                # 6 Gigabytes of available memory
                # should be a good compromise in 2018
                physicalMemory = 6000
                _logger.info("Assumed physical memory %.1f MBytes" %
                             physicalMemory)
            else:
                physicalMemory /= (1024 * 1024.)
            _logger.info("Using physical memory %.1f GBytes" %
                         (physicalMemory / 1024))
            if (neededMegaBytes > (0.95*physicalMemory))\
               and (nFiles == 1) and (len(shape) == 3):
                if self.__dtype0 is None:
                    if (bytefactor == 8) and (neededMegaBytes <
                                              (2 * physicalMemory)):
                        # try reading as float32
                        print("Forcing the use of float32 data")
                        self.__dtype = numpy.float32
                    else:
                        raise MemoryError("Force dynamic loading")
                else:
                    raise MemoryError("Force dynamic loading")
            if (mcaIndex == 0) and (nFiles == 1) and (nScans == 1):
                #keep the original arrangement but in memory
                self.data = numpy.zeros(yDataset.shape, self.__dtype)
                considerAsImages = True
            else:
                # force arrangement as spectra
                self.data = numpy.zeros((dim0, dim1, mcaDim), self.__dtype)
            DONE = False
        except (MemoryError, ValueError):
            # some versions report ValueError instead of MemoryError
            if (nFiles == 1) and (len(shape) == 3):
                _logger.warning("Attempting dynamic loading")
                if mSelection is not None:
                    _logger.warning("Ignoring monitor")
                self.data = yDataset
                if mSelection is not None:
                    mdtype = tmpHdf[mpath].dtype
                    if mdtype not in [numpy.float64, numpy.float32]:
                        mdtype = numpy.float64
                    mDataset = numpy.asarray(tmpHdf[mpath], dtype=mdtype)
                    self.monitor = [mDataset]
                if xSelectionList is not None:
                    if len(xpathList) == 1:
                        xpath = xpathList[0]
                        xDataset = tmpHdf[xpath][()]
                        self.x = [xDataset]
                if h5py.version.version < '2.0':
                    #prevent automatic closing keeping a reference
                    #to the open file
                    self._fileReference = hdfStack
                DONE = True
            else:
                # what to do if the number of dimensions is only 2?
                raise

        # get the positioners information associated to the path
        positioners = {}
        try:
            positionersGroup = NexusTools.getPositionersGroup(tmpHdf, path)
            for motorName, motorValues in positionersGroup.items():
                positioners[motorName] = motorValues[()]
        except:
            positionersGroup = None
            positioners = {}

        # get the mca information associated to the path
        mcaObjectPaths = NexusTools.getMcaObjectPaths(tmpHdf, path)
        _time = None
        _calibration = None
        _channels = None
        if considerAsImages:
            self._pathHasRelevantInfo = False
        else:
            numberOfRelevantInfoKeys = 0
            for objectPath in mcaObjectPaths:
                if objectPath not in ["counts", "target"]:
                    numberOfRelevantInfoKeys += 1
            if numberOfRelevantInfoKeys:  # not just "counts" or "target"
                self._pathHasRelevantInfo = True
                if "live_time" in mcaObjectPaths:
                    if DONE:
                        # hopefully it will fit into memory
                        if mcaObjectPaths["live_time"] in tmpHdf:
                            _time = tmpHdf[mcaObjectPaths["live_time"]][()]
                        elif "::" in mcaObjectPaths["live_time"]:
                            tmpFileName, tmpDatasetPath = \
                                        mcaObjectPaths["live_time"].split("::")
                            with h5py.File(tmpFileName, "r") as tmpH5:
                                _time = tmpH5[tmpDatasetPath][()]
                        else:
                            del mcaObjectPaths["live_time"]
                    else:
                        # we have to have as many live times as MCA spectra
                        _time = numpy.zeros( \
                                    (self.data.shape[0] * self.data.shape[1]),
                                    dtype=numpy.float64)
                elif "elapsed_time" in mcaObjectPaths:
                    if DONE:
                        # hopefully it will fit into memory
                        if mcaObjectPaths["elapsed_time"] in tmpHdf:
                            _time = \
                                tmpHdf[mcaObjectPaths["elapsed_time"]][()]
                        elif "::" in mcaObjectPaths["elapsed_time"]:
                            tmpFileName, tmpDatasetPath = \
                                    mcaObjectPaths["elapsed_time"].split("::")
                            with h5py.File(tmpFileName, "r") as tmpH5:
                                _time = tmpH5[tmpDatasetPath][()]
                        else:
                            del mcaObjectPaths["elapsed_time"]
                    else:
                        # we have to have as many elpased times as MCA spectra
                        _time = numpy.zeros(
                            (self.data.shape[0] * self.data.shape[1]),
                            numpy.float32)
                if "calibration" in mcaObjectPaths:
                    if mcaObjectPaths["calibration"] in tmpHdf:
                        _calibration = \
                                tmpHdf[mcaObjectPaths["calibration"]][()]
                    elif "::" in mcaObjectPaths["calibration"]:
                        tmpFileName, tmpDatasetPath = \
                                    mcaObjectPaths["calibration"].split("::")
                        with h5py.File(tmpFileName, "r") as tmpH5:
                            _calibration = tmpH5[tmpDatasetPath][()]
                    else:
                        del mcaObjectPaths["calibration"]
                if "channels" in mcaObjectPaths:
                    if mcaObjectPaths["channels"] in tmpHdf:
                        _channels = \
                                tmpHdf[mcaObjectPaths["channels"]][()]
                    elif "::" in mcaObjectPaths["channels"]:
                        tmpFileName, tmpDatasetPath = \
                                    mcaObjectPaths["channels"].split("::")
                        with h5py.File(tmpFileName, "r") as tmpH5:
                            _channels = tmpH5[tmpDatasetPath][()]
                    else:
                        del mcaObjectPaths["channels"]
            else:
                self._pathHasRelevantInfo = False

        if (not DONE) and (not considerAsImages):
            _logger.info("Data in memory as spectra")
            self.info["McaIndex"] = 2
            n = 0

            if dim0 == 1:
                self.onBegin(dim1)
            else:
                self.onBegin(dim0)
            self.incrProgressBar = 0
            for hdf in hdfStack._sourceObjectList:
                entryNames = list(hdf["/"].keys())
                goodEntryNames = []
                for entry in entryNames:
                    tmpPath = "/" + entry
                    try:
                        if hasattr(hdf[tmpPath], "keys"):
                            goodEntryNames.append(entry)
                    except KeyError:
                        _logger.info("Broken link with key? <%s>" % tmpPath)

                for scan in scanlist:
                    IN_MEMORY = None
                    nStart = n
                    for ySelection in ySelectionList:
                        n = nStart
                        if JUST_KEYS:
                            entryName = goodEntryNames[
                                int(scan.split(".")[-1]) - 1]
                            path = entryName + ySelection
                            if mSelection is not None:
                                mpath = entryName + mSelection
                                mdtype = hdf[mpath].dtype
                                if mdtype not in [
                                        numpy.float64, numpy.float32
                                ]:
                                    mdtype = numpy.float64
                                mDataset = numpy.asarray(hdf[mpath],
                                                         dtype=mdtype)
                            if xSelectionList is not None:
                                xDatasetList = []
                                for xSelection in xSelectionList:
                                    xpath = entryName + xSelection
                                    xDataset = hdf[xpath][()]
                                    xDatasetList.append(xDataset)
                        else:
                            path = scan + ySelection
                            if mSelection is not None:
                                mpath = scan + mSelection
                                mdtype = hdf[mpath].dtype
                                if mdtype not in [
                                        numpy.float64, numpy.float32
                                ]:
                                    mdtype = numpy.float64
                                mDataset = numpy.asarray(hdf[mpath],
                                                         dtype=mdtype)
                            if xSelectionList is not None:
                                xDatasetList = []
                                for xSelection in xSelectionList:
                                    xpath = scan + xSelection
                                    xDataset = hdf[xpath][()]
                                    xDatasetList.append(xDataset)
                        try:
                            yDataset = hdf[path]
                            tmpShape = yDataset.shape
                            totalBytes = numpy.ones((1, ),
                                                    yDataset.dtype).itemsize
                            for nItems in tmpShape:
                                totalBytes *= nItems
                            # should one be conservative or just try?
                            if (totalBytes /
                                (1024. * 1024.)) > (0.4 * physicalMemory):
                                _logger.info(
                                    "Force dynamic loading of spectra")
                                #read from disk
                                IN_MEMORY = False
                            else:
                                #read the data into memory
                                _logger.info(
                                    "Attempt to load whole map into memory")
                                yDataset = hdf[path][()]
                                IN_MEMORY = True
                        except (MemoryError, ValueError):
                            _logger.info("Dynamic loading of spectra")
                            yDataset = hdf[path]
                            IN_MEMORY = False
                        nMcaInYDataset = 1
                        for dim in yDataset.shape:
                            nMcaInYDataset *= dim
                        nMcaInYDataset = int(nMcaInYDataset / mcaDim)
                        timeData = None
                        if _time is not None:
                            if "live_time" in mcaObjectPaths:
                                # it is assumed that all have the same structure!!!
                                timePath = NexusTools.getMcaObjectPaths(
                                    hdf, path)["live_time"]
                            elif "elapsed_time" in mcaObjectPaths:
                                timePath = NexusTools.getMcaObjectPaths(
                                    hdf, path)["elapsed_time"]
                            if timePath in hdf:
                                timeData = hdf[timePath][()]
                            elif "::" in timePath:
                                externalFile, externalPath = timePath.split(
                                    "::")
                                with h5py.File(externalFile, "r") as timeHdf:
                                    timeData = timeHdf[externalPath][()]
                        if mcaIndex != 0:
                            if IN_MEMORY:
                                yDataset.shape = -1, mcaDim
                            if mSelection is not None:
                                case = -1
                                nMonitorData = 1
                                for v in mDataset.shape:
                                    nMonitorData *= v
                                if nMonitorData == nMcaInYDataset:
                                    mDataset.shape = nMcaInYDataset
                                    case = 0
                                elif nMonitorData == (nMcaInYDataset * mcaDim):
                                    case = 1
                                    mDataset.shape = nMcaInYDataset, mcaDim
                                if case == -1:
                                    raise ValueError(\
                                        "I do not know how to handle this monitor data")
                            if timeData is not None:
                                case = -1
                                nTimeData = 1
                                for v in timeData.shape:
                                    nTimeData *= v
                                if nTimeData == nMcaInYDataset:
                                    timeData.shape = nMcaInYDataset
                                    case = 0
                                    _time[nStart:nStart +
                                          nMcaInYDataset] += timeData
                                if case == -1:
                                    _logger.warning(
                                        "I do not know how to handle this time data"
                                    )
                                    _logger.warning(
                                        "Ignoring time information")
                                    _time = None
                            if (len(yDataset.shape) == 3) and\
                               (dim1 == yDataset.shape[1]):
                                mca = 0
                                deltaI = int(yDataset.shape[1] / dim1)
                                for ii in range(yDataset.shape[0]):
                                    i = int(n / dim1)
                                    yData = yDataset[ii:(ii + 1)]
                                    yData.shape = -1, mcaDim
                                    if mSelection is not None:
                                        if case == 0:
                                            mData = numpy.outer(
                                                mDataset[mca:(mca + dim1)],
                                                numpy.ones((mcaDim)))
                                            self.data[i, :, :] += yData / mData
                                        elif case == 1:
                                            mData = mDataset[mca:(mca +
                                                                  dim1), :]
                                            mData.shape = -1, mcaDim
                                            self.data[i, :, :] += yData / mData
                                    else:
                                        self.data[i:(i + deltaI), :] += yData
                                    n += yDataset.shape[1]
                                    mca += dim1
                            else:
                                for mca in range(nMcaInYDataset):
                                    i = int(n / dim1)
                                    j = n % dim1
                                    if len(yDataset.shape) == 3:
                                        ii = int(mca / yDataset.shape[1])
                                        jj = mca % yDataset.shape[1]
                                        yData = yDataset[ii, jj]
                                    elif len(yDataset.shape) == 2:
                                        yData = yDataset[mca, :]
                                    elif len(yDataset.shape) == 1:
                                        yData = yDataset
                                    if mSelection is not None:
                                        if case == 0:
                                            self.data[
                                                i,
                                                j, :] += yData / mDataset[mca]
                                        elif case == 1:
                                            self.data[
                                                i, j, :] += yData / mDataset[
                                                    mca, :]
                                    else:
                                        self.data[i, j, :] += yData
                                    n += 1
Exemple #3
0
    def loadFileList(self, filelist, selection, scanlist=None):
        """
        loadFileList(self, filelist, y, scanlist=None, monitor=None, x=None)
        filelist is the list of file names belonging to the stack
        selection is a dictionary with the keys x, y, m.
        x        is the path to the x data (the channels) in the spectrum,
                 without the first level "directory". It is unused (for now).
        y        is the path to the 1D data (the counts) in the spectrum,
                 without the first level "directory"
        m        is the path to the normalizing data (I0 or whatever)
                 without the first level "directory".
        scanlist is the list of first level "directories" containing the 1D data
                 Example: The actual path has the form:
                 /whatever1/whatever2/counts
                 That means scanlist = ["/whatever1"]
                 and               selection['y'] = "/whatever2/counts"
        """
        if DEBUG:
            print("filelist = ", filelist)
            print("selection = ", selection)
            print("scanlist = ", scanlist)
        # all the files in the same source
        hdfStack = NexusDataSource.NexusDataSource(filelist)

        #if there is more than one file, it is assumed all the files have
        #the same structure.
        tmpHdf = hdfStack._sourceObjectList[0]
        entryNames = []
        for key in tmpHdf["/"].keys():
            if isinstance(tmpHdf["/" + key], h5py.Group):
                entryNames.append(key)

        # built the selection in terms of HDF terms
        # for the time being, only the first item in x selection used

        xSelection = selection['x']
        if xSelection is not None:
            if type(xSelection) != type([]):
                xSelection = [xSelection]
        if type(xSelection) == type([]):
            if len(xSelection):
                xSelection = xSelection[0]
            else:
                xSelection = None
        else:
            xSelection = None
        # only one y is taken
        ySelection = selection['y']
        if type(ySelection) == type([]):
            ySelection = ySelection[0]

        # monitor selection
        mSelection = selection['m']
        if mSelection not in [None, []]:
            if type(mSelection) != type([]):
                mSelection = [mSelection]
        if type(mSelection) == type([]):
            if len(mSelection):
                mSelection = mSelection[0]
            else:
                mSelection = None
        else:
            mSelection = None

        USE_JUST_KEYS = False
        # deal with the pathological case where the scanlist corresponds
        # to a selected top level dataset
        if len(entryNames) == 0:
            if scanlist is not None:
                if len(scanlist) == 1:
                    if scanlist[0] == ySelection:
                        scanlist = None
                        USE_JUST_KEYS = True
        elif len(entryNames) == 1:
            # deal with the SOLEIL case of one entry but with different name
            # in different files
            USE_JUST_KEYS = True
        elif scanlist in [None, []]:
            USE_JUST_KEYS = True
        if USE_JUST_KEYS:
            #if the scanlist is None, it is assumed we are interested on all
            #the scans containing the selection, not that all the scans
            #contain the selection.
            scanlist = []
            if 0:
                JUST_KEYS = False
                #expect same entry names in the files
                #Unfortunately this does not work for SOLEIL
                for entry in entryNames:
                    path = "/" + entry + ySelection
                    dirname = posixpath.dirname(path)
                    base = posixpath.basename(path)
                    try:
                        if base in tmpHdf[dirname].keys():
                            scanlist.append(entry)
                    except:
                        pass
            else:
                JUST_KEYS = True
                #expect same structure in the files even if the
                #names are different (SOLEIL ...)
                if len(entryNames):
                    i = 0
                    for entry in entryNames:
                        path = "/" + entry + ySelection
                        dirname = posixpath.dirname(path)
                        base = posixpath.basename(path)
                        if hasattr(tmpHdf[dirname], "keys"):
                            i += 1
                            if base in tmpHdf[dirname].keys():
                                scanlist.append("1.%d" % i)
                    if not len(scanlist):
                        path = "/" + ySelection
                        dirname = posixpath.dirname(path)
                        base = posixpath.basename(path)
                        try:
                            if base in tmpHdf[dirname].keys():
                                JUST_KEYS = False
                                scanlist.append("")
                        except:
                            #it will crash later on
                            pass
                else:
                    JUST_KEYS = False
                    scanlist.append("")
        else:
            try:
                number, order = [int(x) for x in scanlist[0].split(".")]
                JUST_KEYS = True
            except:
                JUST_KEYS = False
            if not JUST_KEYS:
                for scan in scanlist:
                    if scan.startswith("/"):
                        t = scan[1:]
                    else:
                        t = scan
                    if t not in entryNames:
                        raise ValueError("Entry %s not in file" % scan)

        nFiles = len(filelist)
        nScans = len(scanlist)
        if JUST_KEYS:
            if not nScans:
                raise IOError("No entry contains the required data")

        if DEBUG:
            print("Retained number of files = %d" % nFiles)
            print("Retained number of scans = %d" % nScans)

        #Now is to decide the number of mca ...
        #I assume all the scans contain the same number of mca
        if JUST_KEYS:
            path = "/" + entryNames[int(scanlist[0].split(".")[-1]) -
                                    1] + ySelection
            if mSelection is not None:
                mpath = "/" + entryNames[int(scanlist[0].split(".")[-1]) -
                                         1] + mSelection
            if xSelection is not None:
                xpath = "/" + entryNames[int(scanlist[0].split(".")[-1]) -
                                         1] + xSelection
        else:
            path = scanlist[0] + ySelection
            if mSelection is not None:
                mpath = scanlist[0] + mSelection
            if xSelection is not None:
                xpath = scanlist[0] + xSelection

        yDataset = tmpHdf[path]

        if self.__dtype is None:
            self.__dtype = yDataset.dtype
            if self.__dtype in [numpy.int16, numpy.uint16]:
                self.__dtype = numpy.float32
            elif self.__dtype in [numpy.int32, numpy.uint32]:
                self.__dtype = numpy.float64

        #figure out the shape of the stack
        shape = yDataset.shape
        mcaIndex = selection.get('index', len(shape) - 1)
        if mcaIndex == -1:
            mcaIndex = len(shape) - 1
        if DEBUG:
            print("mcaIndex = %d" % mcaIndex)
        considerAsImages = False
        dim0, dim1, mcaDim = self.getDimensions(nFiles,
                                                nScans,
                                                shape,
                                                index=mcaIndex)
        try:
            if self.__dtype in [numpy.float32, numpy.int32]:
                bytefactor = 4
            elif self.__dtype in [numpy.int16, numpy.uint16]:
                bytefactor = 2
            elif self.__dtype in [numpy.int8, numpy.uint8]:
                bytefactor = 1
            else:
                bytefactor = 8

            neededMegaBytes = nFiles * dim0 * dim1 * (mcaDim * bytefactor /
                                                      (1024 * 1024.))
            physicalMemory = PhysicalMemory.getPhysicalMemoryOrNone()
            if physicalMemory is None:
                # 5 Gigabytes should be a good compromise
                physicalMemory = 6000
            else:
                physicalMemory /= (1024 * 1024.)
            if (neededMegaBytes > (0.95*physicalMemory))\
               and (nFiles == 1) and (len(shape) == 3):
                if self.__dtype0 is None:
                    if (bytefactor == 8) and (neededMegaBytes <
                                              (2 * physicalMemory)):
                        #try reading as float32
                        self.__dtype = numpy.float32
                    else:
                        raise MemoryError("Force dynamic loading")
                else:
                    raise MemoryError("Force dynamic loading")
            if (mcaIndex == 0) and (nFiles == 1) and (nScans == 1):
                #keep the original arrangement but in memory
                self.data = numpy.zeros(yDataset.shape, self.__dtype)
                considerAsImages = True
            else:
                # force arrangement as spectra
                self.data = numpy.zeros((dim0, dim1, mcaDim), self.__dtype)
            DONE = False
        except (MemoryError, ValueError):
            #some versions report ValueError instead of MemoryError
            if (nFiles == 1) and (len(shape) == 3):
                print("Attempting dynamic loading")
                self.data = yDataset
                if mSelection is not None:
                    mDataset = tmpHdf[mpath].value
                    self.monitor = [mDataset]
                if xSelection is not None:
                    xDataset = tmpHdf[xpath].value
                    self.x = [xDataset]
                if h5py.version.version < '2.0':
                    #prevent automatic closing keeping a reference
                    #to the open file
                    self._fileReference = hdfStack
                DONE = True
            else:
                #what to do if the number of dimensions is only 2?
                raise

        if (not DONE) and (not considerAsImages):
            self.info["McaIndex"] = 2
            n = 0

            if dim0 == 1:
                self.onBegin(dim1)
            else:
                self.onBegin(dim0)
            self.incrProgressBar = 0
            for hdf in hdfStack._sourceObjectList:
                entryNames = list(hdf["/"].keys())
                goodEntryNames = []
                for entry in entryNames:
                    tmpPath = "/" + entry
                    if hasattr(hdf[tmpPath], "keys"):
                        goodEntryNames.append(entry)
                for scan in scanlist:
                    if JUST_KEYS:
                        entryName = goodEntryNames[int(scan.split(".")[-1]) -
                                                   1]
                        path = entryName + ySelection
                        if mSelection is not None:
                            mpath = entryName + mSelection
                            mDataset = hdf[mpath].value
                        if xSelection is not None:
                            xpath = entryName + xSelection
                            xDataset = hdf[xpath].value
                    else:
                        path = scan + ySelection
                        if mSelection is not None:
                            mpath = scan + mSelection
                            mDataset = hdf[mpath].value
                        if xSelection is not None:
                            xpath = scan + xSelection
                            xDataset = hdf[xpath].value
                    try:
                        yDataset = hdf[path]
                        tmpShape = yDataset.shape
                        totalBytes = numpy.ones((1, ), yDataset.dtype).itemsize
                        for nItems in tmpShape:
                            totalBytes *= nItems
                        if (totalBytes / (1024. * 1024.)) > 500:
                            #read from disk
                            IN_MEMORY = False
                        else:
                            #read the data into memory
                            yDataset = hdf[path].value
                            IN_MEMORY = True
                    except (MemoryError, ValueError):
                        yDataset = hdf[path]
                        IN_MEMORY = False
                    nMcaInYDataset = 1
                    for dim in yDataset.shape:
                        nMcaInYDataset *= dim
                    nMcaInYDataset = int(nMcaInYDataset / mcaDim)
                    if mcaIndex != 0:
                        if IN_MEMORY:
                            yDataset.shape = -1, mcaDim
                        if mSelection is not None:
                            case = -1
                            nMonitorData = 1
                            for v in mDataset.shape:
                                nMonitorData *= v
                            if nMonitorData == nMcaInYDataset:
                                mDataset.shape = nMcaInYDataset
                                case = 0
                            elif nMonitorData == (nMcaInYDataset * mcaDim):
                                case = 1
                                mDataset.shape = nMcaInYDataset, mcaDim
                            if case == -1:
                                raise ValueError(\
                                    "I do not know how to handle this monitor data")
                        if (len(yDataset.shape) == 3) and\
                           (dim1 == yDataset.shape[1]):
                            mca = 0
                            deltaI = int(yDataset.shape[1] / dim1)
                            for ii in range(yDataset.shape[0]):
                                i = int(n / dim1)
                                yData = yDataset[ii:(ii + 1)]
                                yData.shape = -1, mcaDim
                                if mSelection is not None:
                                    if case == 0:
                                        mData = numpy.outer(
                                            mDataset[mca:(mca + dim1)],
                                            numpy.ones((mcaDim)))
                                        self.data[i, :, :] = yData / mData
                                    elif case == 1:
                                        mData = mDataset[mca:(mca + dim1), :]
                                        mData.shape = -1, mcaDim
                                        self.data[i, :, :] = yData / mData
                                else:
                                    self.data[i:(i + deltaI), :] = yData
                                n += yDataset.shape[1]
                                mca += dim1
                        else:
                            for mca in range(nMcaInYDataset):
                                i = int(n / dim1)
                                j = n % dim1
                                if len(yDataset.shape) == 3:
                                    ii = int(mca / yDataset.shape[1])
                                    jj = mca % yDataset.shape[1]
                                    yData = yDataset[ii, jj]
                                elif len(yDataset.shape) == 2:
                                    yData = yDataset[mca, :]
                                elif len(yDataset.shape) == 1:
                                    yData = yDataset
                                if mSelection is not None:
                                    if case == 0:
                                        self.data[i,
                                                  j, :] = yData / mDataset[mca]
                                    elif case == 1:
                                        self.data[
                                            i, j, :] = yData / mDataset[mca, :]
                                else:
                                    self.data[i, j, :] = yData
                                n += 1
                    else:
                        if mSelection is not None:
                            case = -1
                            nMonitorData = 1
                            for v in mDataset.shape:
                                nMonitorData *= v
                            if nMonitorData == yDataset.shape[0]:
                                case = 3
                                mDataset.shape = yDataset.shape[0]
                            elif nMonitorData == nMcaInYDataset:
                                mDataset.shape = nMcaInYDataset
                                case = 0
Exemple #4
0
    def setFileList(self, filelist):
        self.dataSource = NexusDataSource.NexusDataSource(filelist[0])
        self.nexusWidget.setDataSource(self.dataSource)
        phynxFile = self.dataSource._sourceObjectList[0]
        keys = list(phynxFile.keys())
        if len(keys) != 1:
            return

        #check if it is an NXentry
        entry = phynxFile[keys[0]]
        attrs = list(entry.attrs)
        if 'NX_class' in attrs:
            attr = entry.attrs['NX_class']
            if sys.version > '2.9':
                try:
                    attr = attr.decode('utf-8')
                except:
                    print("WARNING: Cannot decode NX_class attribute")
                    attr = None
        else:
            attr = None
        if attr is None:
            return
        if attr != 'NXentry':
            return

        #check if there is only one NXdata
        nxDataList = []
        for key in entry.keys():
            attr = entry[key].attrs.get('NX_class', None)
            if attr is None:
                continue
            if sys.version > '2.9':
                try:
                    attr = attr.decode('utf-8')
                except:
                    print("WARNING: Cannot decode NX_class attribute")
                    continue
            if attr in ['NXdata']:
                nxDataList.append(key)
        if len(nxDataList) != 1:
            return
        nxData = entry[nxDataList[0]]

        #try to get the signals
        signalList = []
        axesList = []
        interpretation = ""
        for key in nxData.keys():
            if 'signal' in nxData[key].attrs.keys():
                if int(nxData[key].attrs['signal']) == 1:
                    signalList.append(key)
                    if len(signalList) == 1:
                        if 'interpretation' in nxData[key].attrs.keys():
                            interpretation = nxData[key].attrs['interpretation']
                            if sys.version > '2.9':
                                try:
                                    interpretation = interpretation.decode('utf-8')
                                except:
                                    print("WARNING: Cannot decode interpretation")
                            if interpretation == "image":
                                self.stackIndexWidget.setIndex(0)
                        if 'axes' in nxData[key].attrs.keys():
                            axes = nxData[key].attrs['axes']
                            if sys.version > '2.9':
                                try:
                                    axes = axes.decode('utf-8')
                                except:
                                    print("WARNING: Cannot decode axes")
                            axes = axes.split(":")
                            for axis in axes:
                                if axis in nxData.keys():
                                    axesList.append(axis)

        if not len(signalList):
            return

        ddict = {}
        ddict['counters'] = []
        ddict['aliases']  = []

        for signal in signalList:
            path = posixpath.join("/",nxDataList[0], signal)
            ddict['counters'].append(path)
            ddict['aliases'].append(posixpath.basename(signal))

        for axis in axesList:
            path = posixpath.join("/",nxDataList[0], axis)
            ddict['counters'].append(path)
            ddict['aliases'].append(posixpath.basename(axis))

        if sys.platform == "darwin" and\
           len(ddict['counters']) > 3 and\
           qt.qVersion().startswith('4.8'):
            # workaround a strange bug on Mac:
            # when the counter list has to be scrolled
            # the selected button also changes!!!!
            return

        self.nexusWidget.setWidgetConfiguration(ddict)
        if len(signalList):
            if len(axesList) == 0:
                self.nexusWidget.cntTable.setCounterSelection({'y':[0]})
            elif interpretation == "image":
                self.nexusWidget.cntTable.setCounterSelection({'y':[0], 'x':[1]})
            elif interpretation == "spectrum":
                self.nexusWidget.cntTable.setCounterSelection({'y':[0], 'x':[len(axesList)]})
            else:
                self.nexusWidget.cntTable.setCounterSelection({'y':[0]})
Exemple #5
0
    def setFileList(self, filelist):
        self.dataSource = NexusDataSource.NexusDataSource(filelist[0])
        self.nexusWidget.setDataSource(self.dataSource)
        phynxFile = self.dataSource._sourceObjectList[0]
        keys = list(phynxFile.keys())
        if len(keys) != 1:
            return

        #check if it is an NXentry
        entry = phynxFile[keys[0]]
        attrs = list(entry.attrs)
        if 'NX_class' in attrs:
            attr = entry.attrs['NX_class']
            if hasattr(attr, "decode"):
                try:
                    attr = attr.decode('utf-8')
                except:
                    print("WARNING: Cannot decode NX_class attribute")
                    attr = None
        else:
            attr = None
        if attr is None:
            return
        if attr not in ['NXentry', b'NXentry']:
            return

        #check if there is only one NXdata
        nxDataList = []
        for key in entry.keys():
            attr = entry[key].attrs.get('NX_class', None)
            if attr is None:
                continue
            if hasattr(attr, "decode"):
                try:
                    attr = attr.decode('utf-8')
                except:
                    print("WARNING: Cannot decode NX_class attribute")
                    continue
            if attr in ['NXdata', b'NXdata']:
                nxDataList.append(key)
        if len(nxDataList) != 1:
            return
        nxData = entry[nxDataList[0]]

        ddict = {'counters': [], 'aliases': []}
        signalList = []
        axesList = []
        interpretation = ""

        signal_key = nxData.attrs.get("signal")
        if signal_key is not None:
            # recent NXdata specification
            if hasattr(signal_key, "decode"):
                try:
                    signal_key = signal_key.decode('utf-8')
                except AttributeError:
                    print("WARNING: Cannot decode NX_class attribute")

            signal_dataset = nxData.get(signal_key)
            if signal_dataset is None:
                return

            interpretation = signal_dataset.attrs.get("interpretation", "")
            if hasattr(interpretation, "decode"):
                try:
                    interpretation = interpretation.decode('utf-8')
                except AttributeError:
                    print("WARNING: Cannot decode interpretation")

            axesList = list(nxData.attrs.get("axes", []))
            if not axesList:
                # try the old method, still documented on nexusformat.org:
                # colon-delimited "array" of dataset names as a signal attr
                axes = signal_dataset.attrs.get('axes')
                if axes is not None:
                    if hasattr(axes, "decode"):
                        try:
                            axes = axes.decode('utf-8')
                        except AttributeError:
                            print("WARNING: Cannot decode axes")
                    axes = axes.split(":")
                    axesList = [ax for ax in axes if ax in nxData]
            signalList.append(signal_key)
        else:
            # old specification
            for key in nxData.keys():
                if 'signal' in nxData[key].attrs.keys():
                    if int(nxData[key].attrs['signal']) == 1:
                        signalList.append(key)
                        if len(signalList) == 1:
                            if 'interpretation' in nxData[key].attrs.keys():
                                interpretation = nxData[key].attrs[
                                    'interpretation']
                                if sys.version > '2.9':
                                    try:
                                        interpretation = interpretation.decode(
                                            'utf-8')
                                    except:
                                        print(
                                            "WARNING: Cannot decode interpretation"
                                        )

                            if 'axes' in nxData[key].attrs.keys():
                                axes = nxData[key].attrs['axes']
                                if sys.version > '2.9':
                                    try:
                                        axes = axes.decode('utf-8')
                                    except:
                                        print("WARNING: Cannot decode axes")
                                axes = axes.split(":")
                                for axis in axes:
                                    if axis in nxData.keys():
                                        axesList.append(axis)

            if not len(signalList):
                return

        if interpretation in ["image", b"image"]:
            self.stackIndexWidget.setIndex(0)

        for signal_key in signalList:
            path = posixpath.join("/", nxDataList[0], signal_key)
            ddict['counters'].append(path)
            ddict['aliases'].append(posixpath.basename(signal_key))

        for axis in axesList:
            path = posixpath.join("/", nxDataList[0], axis)
            ddict['counters'].append(path)
            ddict['aliases'].append(posixpath.basename(axis))

        if sys.platform == "darwin" and\
           len(ddict['counters']) > 3 and\
           qt.qVersion().startswith('4.8'):
            # workaround a strange bug on Mac:
            # when the counter list has to be scrolled
            # the selected button also changes!!!!
            return

        self.nexusWidget.setWidgetConfiguration(ddict)

        if axesList and (interpretation in ["image", b"image"]):
            self.nexusWidget.cntTable.setCounterSelection({'y': [0], 'x': [1]})
        elif axesList and (interpretation in ["spectrum", b"spectrum"]):
            self.nexusWidget.cntTable.setCounterSelection({
                'y': [0],
                'x': [len(axesList)]
            })
        else:
            self.nexusWidget.cntTable.setCounterSelection({'y': [0]})