def createImage(self): """ Creates an image by combining the contents of the three screens to present a page preview. The image associated with each screen is separated into cyan, magenta, and yellow components. We add up the values for each component from the three screen images, and subtract the totals from the maximum value for each corresponding primary color. """ newImage = self.scaledImage.copy() image1 = self.cyanWidget.image() image2 = self.magentaWidget.image() image3 = self.yellowWidget.image() darkness = 255 - self.brightness for y in range(newImage.height()): for x in range(newImage.width()): # Create three screens, using the quantities of the source CMY # components to determine how much of each of the inks are to # be put on each screen. p1 = image1.pixel(x, y) cyan1 = float(255 - qRed(p1)) magenta1 = float(255 - qGreen(p1)) yellow1 = float(255 - qBlue(p1)) p2 = image2.pixel(x, y) cyan2 = float(255 - qRed(p2)) magenta2 = float(255 - qGreen(p2)) yellow2 = float(255 - qBlue(p2)) p3 = image3.pixel(x, y) cyan3 = float(255 - qRed(p3)) magenta3 = float(255 - qGreen(p3)) yellow3 = float(255 - qBlue(p3)) newColor = QColor( max(255 - int(cyan1 + cyan2 + cyan3) - darkness, 0), max(255 - int(magenta1 + magenta2 + magenta3) - darkness, 0), max(255 - int(yellow1 + yellow2 + yellow3) - darkness, 0)) newImage.setPixel(x, y, newColor.rgb()) self.finalWidget.setPixmap(QPixmap.fromImage(newImage))
def colorDiff(c1, c2): redDiff = abs(qRed(c1) - qRed(c2)) greenDiff = abs(qGreen(c1) - qGreen(c2)) blueDiff = abs(qBlue(c1) - qBlue(c2)) alphaDiff = abs(qAlpha(c1) - qAlpha(c2)) return max(redDiff, greenDiff, blueDiff, alphaDiff)
def get_color_at_point(self, x, y): if x >= 0 and y >= 0: rgb = self.qimage.pixel(x, y) return [qRed(rgb), qGreen(rgb), qBlue(rgb)] else: return [0, 0, 0]
def _generateSceneNode(self, file_name, xz_size, peak_height, base_height, blur_iterations, max_size, image_color_invert): scene_node = SceneNode() mesh = MeshBuilder() img = QImage(file_name) if img.isNull(): Logger.log("e", "Image is corrupt.") return None width = max(img.width(), 2) height = max(img.height(), 2) aspect = height / width if img.width() < 2 or img.height() < 2: img = img.scaled(width, height, Qt.IgnoreAspectRatio) base_height = max(base_height, 0) peak_height = max(peak_height, -base_height) xz_size = max(xz_size, 1) scale_vector = Vector(xz_size, peak_height, xz_size) if width > height: scale_vector = scale_vector.set(z=scale_vector.z * aspect) elif height > width: scale_vector = scale_vector.set(x=scale_vector.x / aspect) if width > max_size or height > max_size: scale_factor = max_size / width if height > width: scale_factor = max_size / height width = int(max(round(width * scale_factor), 2)) height = int(max(round(height * scale_factor), 2)) img = img.scaled(width, height, Qt.IgnoreAspectRatio) width_minus_one = width - 1 height_minus_one = height - 1 Job.yieldThread() texel_width = 1.0 / (width_minus_one) * scale_vector.x texel_height = 1.0 / (height_minus_one) * scale_vector.z height_data = numpy.zeros((height, width), dtype=numpy.float32) for x in range(0, width): for y in range(0, height): qrgb = img.pixel(x, y) avg = float(qRed(qrgb) + qGreen(qrgb) + qBlue(qrgb)) / (3 * 255) height_data[y, x] = avg Job.yieldThread() if image_color_invert: height_data = 1 - height_data for _ in range(0, blur_iterations): copy = numpy.pad(height_data, ((1, 1), (1, 1)), mode= "edge") height_data += copy[1:-1, 2:] height_data += copy[1:-1, :-2] height_data += copy[2:, 1:-1] height_data += copy[:-2, 1:-1] height_data += copy[2:, 2:] height_data += copy[:-2, 2:] height_data += copy[2:, :-2] height_data += copy[:-2, :-2] height_data /= 9 Job.yieldThread() height_data *= scale_vector.y height_data += base_height heightmap_face_count = 2 * height_minus_one * width_minus_one total_face_count = heightmap_face_count + (width_minus_one * 2) * (height_minus_one * 2) + 2 mesh.reserveFaceCount(total_face_count) # initialize to texel space vertex offsets. # 6 is for 6 vertices for each texel quad. heightmap_vertices = numpy.zeros((width_minus_one * height_minus_one, 6, 3), dtype = numpy.float32) heightmap_vertices = heightmap_vertices + numpy.array([[ [0, base_height, 0], [0, base_height, texel_height], [texel_width, base_height, texel_height], [texel_width, base_height, texel_height], [texel_width, base_height, 0], [0, base_height, 0] ]], dtype = numpy.float32) offsetsz, offsetsx = numpy.mgrid[0: height_minus_one, 0: width - 1] offsetsx = numpy.array(offsetsx, numpy.float32).reshape(-1, 1) * texel_width offsetsz = numpy.array(offsetsz, numpy.float32).reshape(-1, 1) * texel_height # offsets for each texel quad heightmap_vertex_offsets = numpy.concatenate([offsetsx, numpy.zeros((offsetsx.shape[0], offsetsx.shape[1]), dtype=numpy.float32), offsetsz], 1) heightmap_vertices += heightmap_vertex_offsets.repeat(6, 0).reshape(-1, 6, 3) # apply height data to y values heightmap_vertices[:, 0, 1] = heightmap_vertices[:, 5, 1] = height_data[:-1, :-1].reshape(-1) heightmap_vertices[:, 1, 1] = height_data[1:, :-1].reshape(-1) heightmap_vertices[:, 2, 1] = heightmap_vertices[:, 3, 1] = height_data[1:, 1:].reshape(-1) heightmap_vertices[:, 4, 1] = height_data[:-1, 1:].reshape(-1) heightmap_indices = numpy.array(numpy.mgrid[0:heightmap_face_count * 3], dtype=numpy.int32).reshape(-1, 3) mesh._vertices[0:(heightmap_vertices.size // 3), :] = heightmap_vertices.reshape(-1, 3) mesh._indices[0:(heightmap_indices.size // 3), :] = heightmap_indices mesh._vertex_count = heightmap_vertices.size // 3 mesh._face_count = heightmap_indices.size // 3 geo_width = width_minus_one * texel_width geo_height = height_minus_one * texel_height # bottom mesh.addFaceByPoints(0, 0, 0, 0, 0, geo_height, geo_width, 0, geo_height) mesh.addFaceByPoints(geo_width, 0, geo_height, geo_width, 0, 0, 0, 0, 0) # north and south walls for n in range(0, width_minus_one): x = n * texel_width nx = (n + 1) * texel_width hn0 = height_data[0, n] hn1 = height_data[0, n + 1] hs0 = height_data[height_minus_one, n] hs1 = height_data[height_minus_one, n + 1] mesh.addFaceByPoints(x, 0, 0, nx, 0, 0, nx, hn1, 0) mesh.addFaceByPoints(nx, hn1, 0, x, hn0, 0, x, 0, 0) mesh.addFaceByPoints(x, 0, geo_height, nx, 0, geo_height, nx, hs1, geo_height) mesh.addFaceByPoints(nx, hs1, geo_height, x, hs0, geo_height, x, 0, geo_height) # west and east walls for n in range(0, height_minus_one): y = n * texel_height ny = (n + 1) * texel_height hw0 = height_data[n, 0] hw1 = height_data[n + 1, 0] he0 = height_data[n, width_minus_one] he1 = height_data[n + 1, width_minus_one] mesh.addFaceByPoints(0, 0, y, 0, 0, ny, 0, hw1, ny) mesh.addFaceByPoints(0, hw1, ny, 0, hw0, y, 0, 0, y) mesh.addFaceByPoints(geo_width, 0, y, geo_width, 0, ny, geo_width, he1, ny) mesh.addFaceByPoints(geo_width, he1, ny, geo_width, he0, y, geo_width, 0, y) mesh.calculateNormals(fast=True) scene_node.setMeshData(mesh.build()) return scene_node
def calc_filter(pixel): return qRgb(self.fit_range(r_lambda(qRed(pixel))), self.fit_range(g_lambda(qGreen(pixel))), self.fit_range(b_lambda(qBlue(pixel))))
def calc_saturate_green(pixel): return qRgb(qRed(pixel), 255, qBlue(pixel))
def calc_to_grayscale(pixel): gray_level = 0.299 * qRed(pixel) + 0.587 * qGreen( pixel) + 0.114 * qBlue(pixel) return qRgb(gray_level, gray_level, gray_level)
def calc_saturate_red(pixel): return qRgb(255, qGreen(pixel), qBlue(pixel))
def calc_reverse(pixel): return qRgb(255 - qRed(pixel), 255 - qGreen(pixel), 255 - qBlue(pixel))
def calc_origin_color(pixel): return qRgb(qRed(pixel), qGreen(pixel), qBlue(pixel))
def get_vector(color: QColor) -> tuple: rgb = color.rgb() return qRed(rgb), qGreen(rgb), qBlue(rgb)
def _generateSceneNode(self, file_name, xz_size, peak_height, base_height, blur_iterations, max_size, image_color_invert): scene_node = SceneNode() mesh = MeshBuilder() img = QImage(file_name) if img.isNull(): Logger.log("e", "Image is corrupt.") return None width = max(img.width(), 2) height = max(img.height(), 2) aspect = height / width if img.width() < 2 or img.height() < 2: img = img.scaled(width, height, Qt.IgnoreAspectRatio) base_height = max(base_height, 0) peak_height = max(peak_height, -base_height) xz_size = max(xz_size, 1) scale_vector = Vector(xz_size, peak_height, xz_size) if width > height: scale_vector = scale_vector.set(z=scale_vector.z * aspect) elif height > width: scale_vector = scale_vector.set(x=scale_vector.x / aspect) if width > max_size or height > max_size: scale_factor = max_size / width if height > width: scale_factor = max_size / height width = int(max(round(width * scale_factor), 2)) height = int(max(round(height * scale_factor), 2)) img = img.scaled(width, height, Qt.IgnoreAspectRatio) width_minus_one = width - 1 height_minus_one = height - 1 Job.yieldThread() texel_width = 1.0 / (width_minus_one) * scale_vector.x texel_height = 1.0 / (height_minus_one) * scale_vector.z height_data = numpy.zeros((height, width), dtype=numpy.float32) for x in range(0, width): for y in range(0, height): qrgb = img.pixel(x, y) avg = float(qRed(qrgb) + qGreen(qrgb) + qBlue(qrgb)) / (3 * 255) height_data[y, x] = avg Job.yieldThread() if image_color_invert: height_data = 1 - height_data for _ in range(0, blur_iterations): copy = numpy.pad(height_data, ((1, 1), (1, 1)), mode="edge") height_data += copy[1:-1, 2:] height_data += copy[1:-1, :-2] height_data += copy[2:, 1:-1] height_data += copy[:-2, 1:-1] height_data += copy[2:, 2:] height_data += copy[:-2, 2:] height_data += copy[2:, :-2] height_data += copy[:-2, :-2] height_data /= 9 Job.yieldThread() height_data *= scale_vector.y height_data += base_height heightmap_face_count = 2 * height_minus_one * width_minus_one total_face_count = heightmap_face_count + (width_minus_one * 2) * ( height_minus_one * 2) + 2 mesh.reserveFaceCount(total_face_count) # initialize to texel space vertex offsets. # 6 is for 6 vertices for each texel quad. heightmap_vertices = numpy.zeros( (width_minus_one * height_minus_one, 6, 3), dtype=numpy.float32) heightmap_vertices = heightmap_vertices + numpy.array( [[[0, base_height, 0], [0, base_height, texel_height], [texel_width, base_height, texel_height], [texel_width, base_height, texel_height], [texel_width, base_height, 0], [0, base_height, 0]]], dtype=numpy.float32) offsetsz, offsetsx = numpy.mgrid[0:height_minus_one, 0:width - 1] offsetsx = numpy.array(offsetsx, numpy.float32).reshape( -1, 1) * texel_width offsetsz = numpy.array(offsetsz, numpy.float32).reshape( -1, 1) * texel_height # offsets for each texel quad heightmap_vertex_offsets = numpy.concatenate([ offsetsx, numpy.zeros((offsetsx.shape[0], offsetsx.shape[1]), dtype=numpy.float32), offsetsz ], 1) heightmap_vertices += heightmap_vertex_offsets.repeat(6, 0).reshape( -1, 6, 3) # apply height data to y values heightmap_vertices[:, 0, 1] = heightmap_vertices[:, 5, 1] = height_data[:-1, : -1].reshape( -1) heightmap_vertices[:, 1, 1] = height_data[1:, :-1].reshape(-1) heightmap_vertices[:, 2, 1] = heightmap_vertices[:, 3, 1] = height_data[ 1:, 1:].reshape(-1) heightmap_vertices[:, 4, 1] = height_data[:-1, 1:].reshape(-1) heightmap_indices = numpy.array(numpy.mgrid[0:heightmap_face_count * 3], dtype=numpy.int32).reshape(-1, 3) mesh._vertices[0:(heightmap_vertices.size // 3), :] = heightmap_vertices.reshape(-1, 3) mesh._indices[0:(heightmap_indices.size // 3), :] = heightmap_indices mesh._vertex_count = heightmap_vertices.size // 3 mesh._face_count = heightmap_indices.size // 3 geo_width = width_minus_one * texel_width geo_height = height_minus_one * texel_height # bottom mesh.addFaceByPoints(0, 0, 0, 0, 0, geo_height, geo_width, 0, geo_height) mesh.addFaceByPoints(geo_width, 0, geo_height, geo_width, 0, 0, 0, 0, 0) # north and south walls for n in range(0, width_minus_one): x = n * texel_width nx = (n + 1) * texel_width hn0 = height_data[0, n] hn1 = height_data[0, n + 1] hs0 = height_data[height_minus_one, n] hs1 = height_data[height_minus_one, n + 1] mesh.addFaceByPoints(x, 0, 0, nx, 0, 0, nx, hn1, 0) mesh.addFaceByPoints(nx, hn1, 0, x, hn0, 0, x, 0, 0) mesh.addFaceByPoints(x, 0, geo_height, nx, 0, geo_height, nx, hs1, geo_height) mesh.addFaceByPoints(nx, hs1, geo_height, x, hs0, geo_height, x, 0, geo_height) # west and east walls for n in range(0, height_minus_one): y = n * texel_height ny = (n + 1) * texel_height hw0 = height_data[n, 0] hw1 = height_data[n + 1, 0] he0 = height_data[n, width_minus_one] he1 = height_data[n + 1, width_minus_one] mesh.addFaceByPoints(0, 0, y, 0, 0, ny, 0, hw1, ny) mesh.addFaceByPoints(0, hw1, ny, 0, hw0, y, 0, 0, y) mesh.addFaceByPoints(geo_width, 0, y, geo_width, 0, ny, geo_width, he1, ny) mesh.addFaceByPoints(geo_width, he1, ny, geo_width, he0, y, geo_width, 0, y) mesh.calculateNormals(fast=True) scene_node.setMeshData(mesh.build()) return scene_node