class TriangleUnderlayRenderer(QObject):
    def __init__(self, parent=None):
        super(TriangleUnderlayRenderer, self).__init__(parent)
        self._shader_program = None
        self._viewport_size = QSize()
        self._window = None

    @pyqtSlot()
    def paint(self):

        # TODO test on Ubuntu
        # for Darwin, it's a must
        gl = self._window.openglContext().versionFunctions()

        if self._shader_program is None:
            self._shader_program = QOpenGLShaderProgram()
            self._shader_program.addShaderFromSourceFile(
                QOpenGLShader.Vertex, 'shaders/OpenGL_2_1/vertex.glsl')
            self._shader_program.addShaderFromSourceFile(
                QOpenGLShader.Fragment, 'shaders/OpenGL_2_1/fragment.glsl')
            self._shader_program.bindAttributeLocation('position', 0)
            self._shader_program.bindAttributeLocation('color', 1)
            self._shader_program.link()

        self._shader_program.bind()
        self._shader_program.enableAttributeArray(0)
        self._shader_program.enableAttributeArray(1)

        self._shader_program.setAttributeArray(0, positions)
        self._shader_program.setAttributeArray(1, colors)

        gl.glViewport(0, 0, self._viewport_size.width(),
                      self._viewport_size.height())

        gl.glClearColor(0.5, 0.5, 0.5, 1)
        gl.glDisable(gl.GL_DEPTH_TEST)

        gl.glClear(gl.GL_COLOR_BUFFER_BIT)

        gl.glDrawArrays(gl.GL_TRIANGLES, 0, 3)

        self._shader_program.disableAttributeArray(0)
        self._shader_program.disableAttributeArray(1)

        self._shader_program.release()

        # Restore the OpenGL state for QtQuick rendering
        self._window.resetOpenGLState()
        self._window.update()

    def set_viewport_size(self, size):
        self._viewport_size = size

    def set_window(self, window):
        self._window = window
Exemple #2
0
class GLWidget(QOpenGLWidget):

    clicked = pyqtSignal()

    PROGRAM_VERTEX_ATTRIBUTE, PROGRAM_TEXCOORD_ATTRIBUTE = range(2)

    vsrc = """
attribute highp vec4 vertex;
attribute mediump vec4 texCoord;
varying mediump vec4 texc;
uniform mediump mat4 matrix;
void main(void)
{
    gl_Position = matrix * vertex;
    texc = texCoord;
}
"""

    fsrc = """
uniform sampler2D texture;
varying mediump vec4 texc;
void main(void)
{
    gl_FragColor = texture2D(texture, texc.st);
}
"""

    coords = (
        ((+1, -1, -1), (-1, -1, -1), (-1, +1, -1), (+1, +1, -1)),
        ((+1, +1, -1), (-1, +1, -1), (-1, +1, +1), (+1, +1, +1)),
        ((+1, -1, +1), (+1, -1, -1), (+1, +1, -1), (+1, +1, +1)),
        ((-1, -1, -1), (-1, -1, +1), (-1, +1, +1), (-1, +1, -1)),
        ((+1, -1, +1), (-1, -1, +1), (-1, -1, -1), (+1, -1, -1)),
        ((-1, -1, +1), (+1, -1, +1), (+1, +1, +1), (-1, +1, +1)),
    )

    def __init__(self, parent=None):
        super(GLWidget, self).__init__(parent)

        self.clearColor = QColor(Qt.black)
        self.xRot = 0
        self.yRot = 0
        self.zRot = 0
        self.program = None

        self.lastPos = QPoint()

    def minimumSizeHint(self):
        return QSize(50, 50)

    def sizeHint(self):
        return QSize(200, 200)

    def rotateBy(self, xAngle, yAngle, zAngle):
        self.xRot += xAngle
        self.yRot += yAngle
        self.zRot += zAngle
        self.update()

    def setClearColor(self, color):
        self.clearColor = color
        self.update()

    def initializeGL(self):
        version_profile = QOpenGLVersionProfile()
        version_profile.setVersion(2, 0)
        self.gl = self.context().versionFunctions(version_profile)
        self.gl.initializeOpenGLFunctions()

        self.makeObject()

        self.gl.glEnable(self.gl.GL_DEPTH_TEST)
        self.gl.glEnable(self.gl.GL_CULL_FACE)

        vshader = QOpenGLShader(QOpenGLShader.Vertex, self)
        vshader.compileSourceCode(self.vsrc)

        fshader = QOpenGLShader(QOpenGLShader.Fragment, self)
        fshader.compileSourceCode(self.fsrc)

        self.program = QOpenGLShaderProgram()
        self.program.addShader(vshader)
        self.program.addShader(fshader)
        self.program.bindAttributeLocation("vertex",
                                           self.PROGRAM_VERTEX_ATTRIBUTE)
        self.program.bindAttributeLocation("texCoord",
                                           self.PROGRAM_TEXCOORD_ATTRIBUTE)
        self.program.link()

        self.program.bind()
        self.program.setUniformValue("texture", 0)

        self.program.enableAttributeArray(self.PROGRAM_VERTEX_ATTRIBUTE)
        self.program.enableAttributeArray(self.PROGRAM_TEXCOORD_ATTRIBUTE)
        self.program.setAttributeArray(self.PROGRAM_VERTEX_ATTRIBUTE,
                                       self.vertices)
        self.program.setAttributeArray(self.PROGRAM_TEXCOORD_ATTRIBUTE,
                                       self.texCoords)

    def paintGL(self):
        self.gl.glClearColor(
            self.clearColor.redF(),
            self.clearColor.greenF(),
            self.clearColor.blueF(),
            self.clearColor.alphaF(),
        )
        self.gl.glClear(self.gl.GL_COLOR_BUFFER_BIT
                        | self.gl.GL_DEPTH_BUFFER_BIT)

        m = QMatrix4x4()
        m.ortho(-0.5, 0.5, 0.5, -0.5, 4.0, 15.0)
        m.translate(0.0, 0.0, -10.0)
        m.rotate(self.xRot / 16.0, 1.0, 0.0, 0.0)
        m.rotate(self.yRot / 16.0, 0.0, 1.0, 0.0)
        m.rotate(self.zRot / 16.0, 0.0, 0.0, 1.0)

        self.program.setUniformValue("matrix", m)

        for i, texture in enumerate(self.textures):
            texture.bind()
            self.gl.glDrawArrays(self.gl.GL_TRIANGLE_FAN, i * 4, 4)

    def resizeGL(self, width, height):
        side = min(width, height)
        self.gl.glViewport((width - side) // 2, (height - side) // 2, side,
                           side)

    def mousePressEvent(self, event):
        self.lastPos = event.pos()

    def mouseMoveEvent(self, event):
        dx = event.x() - self.lastPos.x()
        dy = event.y() - self.lastPos.y()

        if event.buttons() & Qt.LeftButton:
            self.rotateBy(8 * dy, 8 * dx, 0)
        elif event.buttons() & Qt.RightButton:
            self.rotateBy(8 * dy, 0, 8 * dx)

        self.lastPos = event.pos()

    def mouseReleaseEvent(self, event):
        self.clicked.emit()

    def makeObject(self):
        self.textures = []
        self.texCoords = []
        self.vertices = []

        root = QFileInfo(__file__).absolutePath()

        for i in range(6):
            self.textures.append(
                QOpenGLTexture(
                    QImage(root + ("/images/side%d.png" %
                                   (i + 1))).mirrored()))

            for j in range(4):
                self.texCoords.append(((j == 0 or j == 3), (j == 0 or j == 1)))

                x, y, z = self.coords[i][j]
                self.vertices.append((0.2 * x, 0.2 * y, 0.2 * z))
Exemple #3
0
class QtGL2Material(Material):
    def __init__(self, renderer):
        super().__init__()

        self._gl = renderer._gl

        self._shader_program = None
        self._uniform_indices = {}
        self._attribute_indices = {}
        self._uniform_values = {}
        self._bound = False
        self._textures = {}

    def loadVertexShader(self, file):
        if not self._shader_program:
            self._shader_program = QOpenGLShaderProgram()

        self._shader_program.addShaderFromSourceFile(QOpenGLShader.Vertex, file)

    def loadFragmentShader(self, file):
        if not self._shader_program:
            self._shader_program = QOpenGLShaderProgram()

        self._shader_program.addShaderFromSourceFile(QOpenGLShader.Fragment, file)

    def build(self):
        if not self._shader_program:
            Logger.log("e", "No shader sources loaded")
            return

        self._shader_program.link()

    def setUniformValue(self, name, value, **kwargs):
        if not self._shader_program:
            return

        cache = True
        if "cache" in kwargs:
            cache = kwargs["cache"]

        if name not in self._uniform_indices:
            self._uniform_indices[name] = self._shader_program.uniformLocation(name)

        uniform = self._uniform_indices[name]
        if uniform == -1:
            return

        if cache:
            self._uniform_values[uniform] = value

        if self._bound:
            self._setUniformValueDirect(uniform, value)

    def setUniformTexture(self, name, file):
        if not self._shader_program:
            return

        if name not in self._uniform_indices:
            self._uniform_indices[name] = self._shader_program.uniformLocation(name)

        index = self._uniform_indices[name]

        texture = QOpenGLTexture(QImage(file).mirrored())
        texture.setMinMagFilters(QOpenGLTexture.Linear, QOpenGLTexture.Linear)
        self._textures[index] = texture

        self._uniform_values[index] = 1

        if self._bound:
            texture = self._textures[index]
            texture.bind()
            self._setUniformValueDirect(index, texture.textureId())

    def enableAttribute(self, name, type, offset, stride = 0):
        if not self._shader_program:
            return

        self.bind()

        if name not in self._attribute_indices:
            self._attribute_indices[name] = self._shader_program.attributeLocation(name)

        attribute = self._attribute_indices[name]
        if attribute == -1:
            return

        if type is "int":
            self._shader_program.setAttributeBuffer(attribute, self._gl.GL_INT, offset, 1, stride)
        elif type is "float":
            self._shader_program.setAttributeBuffer(attribute, self._gl.GL_FLOAT, offset, 1, stride)
        elif type is "vector2f":
            self._shader_program.setAttributeBuffer(attribute, self._gl.GL_FLOAT, offset, 2, stride)
        elif type is "vector3f":
            self._shader_program.setAttributeBuffer(attribute, self._gl.GL_FLOAT, offset, 3, stride)
        elif type is "vector4f":
            self._shader_program.setAttributeBuffer(attribute, self._gl.GL_FLOAT, offset, 4, stride)

        self._shader_program.enableAttributeArray(attribute)


    def disableAttribute(self, name):
        if not self._shader_program:
            return

        if name not in self._attribute_indices:
            return

        self._shader_program.disableAttributeArray(self._attribute_indices[name])

    def bind(self):
        if not self._shader_program or not self._shader_program.isLinked():
            return

        if self._bound:
            return

        self._bound = True
        self._shader_program.bind()

        for uniform in self._uniform_values:
            if uniform in self._textures:
                texture = self._textures[uniform]
                texture.bind()
                self._setUniformValueDirect(uniform, 0)
            else:
                self._setUniformValueDirect(uniform, self._uniform_values[uniform])

    def release(self):
        if not self._shader_program or not self._bound:
            return

        for texture in self._textures.values():
            texture.release()

        self._bound = False
        self._shader_program.release()

    def _matrixToQMatrix4x4(self, m):
        return QMatrix4x4(m.at(0,0), m.at(0, 1), m.at(0, 2), m.at(0, 3),
                          m.at(1,0), m.at(1, 1), m.at(1, 2), m.at(1, 3),
                          m.at(2,0), m.at(2, 1), m.at(2, 2), m.at(2, 3),
                          m.at(3,0), m.at(3, 1), m.at(3, 2), m.at(3, 3))

    def _setUniformValueDirect(self, uniform, value):
        if type(value) is Vector:
            self._shader_program.setUniformValue(uniform, QVector3D(value.x, value.y, value.z))
        elif type(value) is Matrix:
            self._shader_program.setUniformValue(uniform, self._matrixToQMatrix4x4(value))
        elif type(value) is Color:
            self._shader_program.setUniformValue(uniform, QColor(value.r * 255, value.g * 255, value.b * 255, value.a * 255))
        elif type(value) is list and len(value) is 2:
            self._shader_program.setUniformValue(uniform, QVector2D(value[0], value[1]))
        elif type(value) is list and len(value) is 3:
            self._shader_program.setUniformValue(uniform, QVector3D(value[0], value[1], value[2]))
        elif type(value) is list and len(value) is 4:
            self._shader_program.setUniformValue(uniform, QVector4D(value[0], value[1], value[2], value[3]))
        else:
            self._shader_program.setUniformValue(uniform, value)
Exemple #4
0
class ShaderProgram:
    def __init__(self):
        self._bindings = {}
        self._attribute_bindings = {}

        self._shader_program = None
        self._uniform_indices = {}
        self._attribute_indices = {}
        self._uniform_values = {}
        self._bound = False
        self._textures = {}

        self._debug_shader = False  # Set this to true to enable extra logging concerning shaders

    ##  Load a shader program file.
    #
    #   This method loads shaders from a simple text file, using Python's configparser
    #   as parser.
    #
    #   \note When writing shader program files, please note that configparser expects
    #   indented lines for multiline values. Since the shaders are provided as a single
    #   multiline string, make sure to indent them properly.
    #
    #   \param file_name The shader file to load.
    #   \param version can be used for a special version of the shader. it will be appended
    #          to the keys [vertex, fragment, geometry] in the shader file
    #
    #   \exception{InvalidShaderProgramError} Raised when the file provided does not contain any valid shaders.
    def load(self, file_name, version = ""):
        Logger.log("d", "Loading shader file [%s]...", file_name)

        vertex_key = "vertex" + version
        fragment_key = "fragment" + version
        geometry_key = "geometry" + version

        # Hashtags should not be ignored, they are part of GLSL.
        parser = configparser.ConfigParser(interpolation = None, comment_prefixes = (';', ))
        parser.optionxform = lambda option: option
        parser.read(file_name)

        if "shaders" not in parser:
            raise InvalidShaderProgramError("{0} is missing section [shaders]".format(file_name))

        if vertex_key not in parser["shaders"] or fragment_key not in parser["shaders"]:
            raise InvalidShaderProgramError("{0} is missing a shader [{1}, {2}]".format(file_name, vertex_key, fragment_key))

        vertex_code = parser["shaders"][vertex_key]
        if self._debug_shader:
            vertex_code_str = "\n".join(["%4i %s" % (i, s) for i, s in enumerate(vertex_code.split("\n"))])
            Logger.log("d", "Vertex shader")
            Logger.log("d", vertex_code_str)

        fragment_code = parser["shaders"][fragment_key]
        if self._debug_shader:
            fragment_code_str = "\n".join(["%4i %s" % (i, s) for i, s in enumerate(fragment_code.split("\n"))])
            Logger.log("d", "Fragment shader")
            Logger.log("d", fragment_code_str)

        self.setVertexShader(vertex_code)
        self.setFragmentShader(fragment_code)
        # Geometry shader is optional and only since version OpenGL 3.2 or with extension ARB_geometry_shader4
        if geometry_key in parser["shaders"]:
            code = parser["shaders"][geometry_key]
            if self._debug_shader:
                code_str = "\n".join(["%4i %s" % (i, s) for i, s in enumerate(code.split("\n"))])
                Logger.log("d", "Loading geometry shader... \n")
                Logger.log("d", code_str)
            self.setGeometryShader(code)

        self.build()

        if "defaults" in parser:
            for key, value in parser["defaults"].items():
                self.setUniformValue(key, ast.literal_eval(value), cache = True)

        if "bindings" in parser:
            for key, value in parser["bindings"].items():
                self.addBinding(key, value)

        if "attributes" in parser:
            for key, value in parser["attributes"].items():
                self.addAttributeBinding(key, value)

    ##  Set the vertex shader to use.
    #
    #   \param shader \type{string} The vertex shader to use.
    def setVertexShader(self, shader):
        if not self._shader_program:
            self._shader_program = QOpenGLShaderProgram()

        if not self._shader_program.addShaderFromSourceCode(QOpenGLShader.Vertex, shader):
            Logger.log("e", "Vertex shader failed to compile: %s", self._shader_program.log())

    ##  Set the fragment shader to use.
    #
    #   \param shader \type{string} The fragment shader to use.
    def setFragmentShader(self, shader):
        if not self._shader_program:
            self._shader_program = QOpenGLShaderProgram()

        if not self._shader_program.addShaderFromSourceCode(QOpenGLShader.Fragment, shader):
            Logger.log("e", "Fragment shader failed to compile: %s", self._shader_program.log())

    def setGeometryShader(self, shader):
        if not self._shader_program:
            self._shader_program = QOpenGLShaderProgram()

        if not self._shader_program.addShaderFromSourceCode(QOpenGLShader.Geometry, shader):
            Logger.log("e", "Geometry shader failed to compile: %s", self._shader_program.log())

    ##  Build the complete shader program out of the separately provided sources.
    def build(self):
        if not self._shader_program:
            Logger.log("e", "No shader sources loaded")
            return

        if not self._shader_program.link():
            Logger.log("e", "Shader failed to link: %s", self._shader_program.log())

    ##  Set a named uniform variable.
    #
    #   Unless otherwise specified as argument, the specified value will be cached so that
    #   it does not matter whether bind() has already been called. Instead, if the shader
    #   is not currently bound, the next call to bind() will update the uniform values.
    #
    #   \param name The name of the uniform variable.
    #   \param value The value to set the variable to.
    #   \param kwargs Keyword arguments.
    #                 Possible keywords:
    #                 - cache: False when the value should not be cached for later calls to bind().
    def setUniformValue(self, name, value, **kwargs):
        if not self._shader_program:
            return

        if name not in self._uniform_indices:
            self._uniform_indices[name] = self._shader_program.uniformLocation(name)

        uniform = self._uniform_indices[name]
        if uniform == -1:
            return

        if kwargs.get("cache", True):
            self._uniform_values[uniform] = value

        if self._bound:
            self._setUniformValueDirect(uniform, value)
    ##  Set a texture that should be bound to a specified texture unit when this shader is bound.
    #
    #   \param texture_unit \type{int} The texture unit to bind the texture to.
    #   \param texture \type{Texture} The texture object to bind to the texture unit.
    def setTexture(self, texture_unit, texture):
        if texture is None:
            if texture_unit in self._textures:
                del self._textures[texture_unit]
        else:
            self._textures[texture_unit] = texture

    ##  Enable a vertex attribute to be used.
    #
    #   \param name The name of the attribute to enable.
    #   \param type The type of the attribute. Should be a python type.
    #   \param offset The offset into a bound buffer where the data for this attribute starts.
    #   \param stride The stride of the attribute.
    #
    #   \note If the shader is not bound, this will bind the shader.
    def enableAttribute(self, name, type, offset, stride = 0):
        if not self._shader_program:
            return

        self.bind()

        if name not in self._attribute_indices:
            self._attribute_indices[name] = self._shader_program.attributeLocation(name)

        attribute = self._attribute_indices[name]
        if attribute == -1:
            return

        if type is "int":
            self._shader_program.setAttributeBuffer(attribute, 0x1404, offset, 1, stride) #GL_INT
        elif type is "float":
            self._shader_program.setAttributeBuffer(attribute, 0x1406, offset, 1, stride) #GL_FLOAT
        elif type is "vector2f":
            self._shader_program.setAttributeBuffer(attribute, 0x1406, offset, 2, stride) #GL_FLOAT
        elif type is "vector3f":
            self._shader_program.setAttributeBuffer(attribute, 0x1406, offset, 3, stride) #GL_FLOAT
        elif type is "vector4f":
            self._shader_program.setAttributeBuffer(attribute, 0x1406, offset, 4, stride) #GL_FLOAT

        self._shader_program.enableAttributeArray(attribute)

    ##  Disable a vertex attribute so it is no longer used.
    #
    #   \param name The name of the attribute to use.
    def disableAttribute(self, name):
        if not self._shader_program:
            return

        if name not in self._attribute_indices:
            return

        self._shader_program.disableAttributeArray(self._attribute_indices[name])

    ##  Bind the shader to use it for rendering.
    def bind(self):
        if not self._shader_program or not self._shader_program.isLinked():
            return

        if self._bound:
            return

        self._shader_program.bind()
        self._bound = True

        for uniform in self._uniform_values:
            self._setUniformValueDirect(uniform, self._uniform_values[uniform])

        for texture_unit, texture in self._textures.items():
            texture.bind(texture_unit)

    ##  Release the shader so it will no longer be used for rendering.
    def release(self):
        if not self._shader_program or not self._bound:
            return

        self._shader_program.release()
        self._bound = False

        for texture_unit, texture in self._textures.items():
            texture.release(texture_unit)

    ##  Add a uniform value binding.
    #
    #   Uniform value bindings are used to provide an abstraction between uniforms as set
    #   from code and uniforms as used from shaders. Each binding specifies a uniform name
    #   as key that should be mapped to a string that can be used to look up the value of
    #   the uniform.
    #
    #   \param key The name of the uniform to bind.
    #   \param value The string used to look up values for this uniform.
    def addBinding(self, key, value):
        self._bindings[value] = key

    ##  Remove a uniform value binding.
    #
    #   \param key The uniform to remove.
    def removeBinding(self, key):
        if key not in self._bindings:
            return

        del self._bindings[key]

    ##  Update the values of bindings.
    #
    #   \param kwargs Keyword arguments.
    #                 Each key should correspond to a binding name, with the
    #                 value being the value of the uniform.
    #
    #   \note By default, these values are not cached as they are expected to be continuously
    #         updated.
    def updateBindings(self, **kwargs):
        for key, value in kwargs.items():
            if key in self._bindings and value is not None:
                self.setUniformValue(self._bindings[key], value, cache = False)

    ##  Add an attribute binding.
    #
    #   Attribute bindings are similar to uniform value bindings, except they specify what
    #   what attribute name binds to which attribute in the shader.
    #
    #   TODO: Actually use these bindings. However, that kind of depends on a more freeform
    #   MeshData object as freeform bindings are rather useless when we only have 5 supported
    #   attributes.
    #
    #   \param key The identifier used in the shader for the attribute.
    #   \param value The name to bind to this attribute.
    def addAttributeBinding(self, key, value):
        self._attribute_bindings[key] = value

    ##  Remove an attribute binding.
    #
    #   \param key The name of the attribute binding to remove.
    def removeAttributeBinding(self, key):
        if key not in self._attribute_bindings:
            return

        del self._attribute_bindings[key]

    def _matrixToQMatrix4x4(self, m):
        return QMatrix4x4(m.at(0, 0), m.at(0, 1), m.at(0, 2), m.at(0, 3), m.at(1, 0), m.at(1, 1), m.at(1, 2), m.at(1, 3),
            m.at(2, 0), m.at(2, 1), m.at(2, 2), m.at(2, 3), m.at(3, 0), m.at(3, 1), m.at(3, 2), m.at(3, 3))

    def _setUniformValueDirect(self, uniform, value):
        if type(value) is Vector:
            self._shader_program.setUniformValue(uniform, QVector3D(value.x, value.y, value.z))
        elif type(value) is Matrix:
            self._shader_program.setUniformValue(uniform, self._matrixToQMatrix4x4(value))
        elif type(value) is Color:
            self._shader_program.setUniformValue(uniform,
                QColor(value.r * 255, value.g * 255, value.b * 255, value.a * 255))
        elif type(value) is list and len(value) is 2:
            self._shader_program.setUniformValue(uniform, QVector2D(value[0], value[1]))
        elif type(value) is list and len(value) is 3:
            self._shader_program.setUniformValue(uniform, QVector3D(value[0], value[1], value[2]))
        elif type(value) is list and len(value) is 4:
            self._shader_program.setUniformValue(uniform, QVector4D(value[0], value[1], value[2], value[3]))
        elif type(value) is list and type(value[0]) is list and len(value[0]) is 2:
            self._shader_program.setUniformValueArray(uniform, [QVector2D(i[0], i[1]) for i in value])
        else:
            self._shader_program.setUniformValue(uniform, value)
class GLSliceWidget(QtOpenGL.QGLWidget):
    _dataModelChanged = QtCore.pyqtSignal()

    def __init__(self, parent=None, interpolation="linear", **kwargs):
        logger.debug("init")

        super(GLSliceWidget, self).__init__(parent, **kwargs)

        self.renderUpdate = True
        self.parent = parent

        self.setAcceptDrops(True)

        self.texture_LUT = None
        self.setTransform(TransformModel())

        self.renderTimer = QtCore.QTimer(self)
        self.renderTimer.setInterval(50)
        self.renderTimer.timeout.connect(self.onRenderTimer)
        self.renderTimer.start()

        self.dataModel = None

        self.dataPos = 0
        self.slicePos = 0

        self.zoom_fac = 1.
        self.zoom_x = 0.5
        self.zoom_y = 0.5
        # the center in tex coords
        self.zoom_cx = 0.5
        self.zoom_cy = 0.5

        interpolation_vals = ("linear", "nearest")
        if not interpolation in interpolation_vals:
            raise KeyError("interpolation = '%s' not defined ,valid: %s" %
                           (interpolation, str(interpolation_vals)))

        self.interp = (interpolation == "linear")
        # self.refresh()

    def setModel(self, dataModel):
        logger.debug("setModel")

        self.dataModel = dataModel

        if self.dataModel:
            self.transform.setModel(dataModel)

            self.dataModel._dataSourceChanged.connect(self.dataSourceChanged)
            self.dataModel._dataPosChanged.connect(self.dataPosChanged)
            self._dataModelChanged.connect(self.dataModelChanged)
            self._dataModelChanged.emit()

    def setTransform(self, transform):
        self.transform = transform
        self.transform._transformChanged.connect(self.refresh)

    def dragEnterEvent(self, event):
        if event.mimeData().hasUrls():
            event.accept()
        else:
            event.ignore()

    def dropEvent(self, event):
        for url in event.mimeData().urls():
            path = url.toLocalFile().toLocal8Bit().data()
            if self.dataModel:
                self.dataModel.loadFromPath(path, prefetchSize=self.N_PREFETCH)
            else:
                self.setModel(
                    DataModel.fromPath(path, prefetchSize=self.N_PREFETCH))

    def set_colormap(self, name):
        """arr should be of shape (N,3) and gives the rgb components of the colormap"""

        try:
            arr = spimagine.config.__COLORMAPDICT__[name]
            self.makeCurrent()
            self.texture_LUT = fillTexture2d(arr.reshape((1, ) + arr.shape),
                                             self.texture_LUT, self.interp)
        except:
            print("could not load colormap %s" % name)

    def set_colormap_rgb(self, color=[1., 1., 1.]):
        self._set_colormap_array(outer(linspace(0, 1., 255), np.array(color)))

    def _set_colormap_array(self, arr):
        """arr should be of shape (N,3) and gives the rgb components of the colormap"""

        self.makeCurrent()
        self.texture_LUT = fillTexture2d(arr.reshape((1, ) + arr.shape),
                                         self.texture_LUT, self.interp)
        self.refresh()

    def initializeGL(self):

        self.resized = True

        self.output = zeros((100, 100))

        logger.debug("initializeGL")

        self.programTex = QOpenGLShaderProgram()
        self.programTex.addShaderFromSourceCode(QOpenGLShader.Vertex,
                                                vertShaderTex)
        self.programTex.addShaderFromSourceCode(QOpenGLShader.Fragment,
                                                fragShaderTex)
        self.programTex.link()
        self.programTex.bind()
        logger.debug("GLSL programTex log:%s", self.programTex.log())

        glClearColor(0, 0, 0, 1.)

        self.texture = None

        self.quadCoord = np.array([[-1., -1., 0.], [1., -1., 0.], [1., 1., 0.],
                                   [1., 1., 0.], [-1., 1., 0.], [-1., -1.,
                                                                 0.]])

        self.quadCoordTex = np.array([[0, 0], [1., 0.], [1., 1.], [1., 1.],
                                      [0, 1.], [0, 0]])

        self.set_colormap(spimagine.config.__DEFAULTCOLORMAP__)

        glDisable(GL_DEPTH_TEST)
        glEnable(GL_BLEND)

        glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)

    def dataModelChanged(self):
        # if self.dataModel:
        #     self.transform.reset(amin(self.dataModel[0]),
        #                          amax(self.dataModel[0]),
        #                          self.dataModel.stackUnits())
        #

        self.refresh()

    def dataSourceChanged(self):
        # self.transform.reset(amin(self.dataModel[0]),
        #                      amax(self.dataModel[0]),
        #                      self.dataModel.stackUnits())
        self.refresh()

    def dataPosChanged(self, pos):
        self.dataPos = pos
        self.refresh()

    def refresh(self):
        # if self.parentWidget() and self.dataModel:
        #     self.parentWidget().setWindowTitle("SpImagine %s"%self.dataModel.name())
        self.renderUpdate = True

    def resizeGL(self, width, height):
        # height = max(10,height)

        self._viewport_width, self._viewport_height = width, height

        self.resized = True
        self.resetViewPort()

    def getDataWidthHeight(self):
        if not self.dataModel:
            return 1, 1

        dim = array(self.dataModel.size()[1:])[::-1].astype(np.float32)

        dim *= array(self.transform.stackUnits)

        if self.transform.sliceDim == 0:
            dim = dim[[2, 1]]
        elif self.transform.sliceDim == 1:
            dim = dim[[0, 2]]
        elif self.transform.sliceDim == 2:
            dim = dim[[0, 1]]

        w, h = dim[0], dim[1]

        fac = min(1. * self._viewport_width / w,
                  1. * self._viewport_height / h)

        return int(fac * w), int(fac * h)

    def resetViewPort(self):
        w, h = self.getDataWidthHeight()
        glViewport((self._viewport_width - w) // 2,
                   (self._viewport_height - h) // 2, w, h)

    def paintGL(self):

        self.makeCurrent()

        if not glCheckFramebufferStatus(
                GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE:
            return

        # hack
        if self.resized:
            self.resetViewPort()

        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

        if self.dataModel:
            # Draw the render texture
            self.programTex.bind()

            self.texture = fillTexture2d(self.output, self.texture,
                                         self.interp)

            glEnable(GL_TEXTURE_2D)
            glDisable(GL_DEPTH_TEST)

            self.programTex.enableAttributeArray("position")
            self.programTex.enableAttributeArray("texcoord")
            self.programTex.setAttributeArray("position", self.quadCoord)
            self.programTex.setAttributeArray(
                "texcoord",
                self.tex_coords_from_xyzoom(self.zoom_x, self.zoom_y,
                                            self.zoom_fac))

            glActiveTexture(GL_TEXTURE0)
            glBindTexture(GL_TEXTURE_2D, self.texture)
            self.programTex.setUniformValue("texture", 0)

            glActiveTexture(GL_TEXTURE1)
            glBindTexture(GL_TEXTURE_2D, self.texture_LUT)
            self.programTex.setUniformValue("texture_LUT", 1)

            glDrawArrays(GL_TRIANGLES, 0, len(self.quadCoord))

    def render(self):
        logger.debug("render")
        if self.dataModel:
            if self.transform.sliceDim == 0:
                out = fliplr(self.dataModel[self.transform.dataPos]
                             [:, :, self.transform.slicePos].T)
            elif self.transform.sliceDim == 1:
                out = self.dataModel[
                    self.transform.dataPos][:, self.transform.slicePos, :]
            elif self.transform.sliceDim == 2:
                out = self.dataModel[self.transform.dataPos][
                    self.transform.slicePos, :, :]

            min_out, max_out = self.transform.minVal, self.transform.maxVal

            if max_out > min_out:
                self.output = np.maximum(
                    0, (1. * (out - min_out) /
                        (max_out - min_out)))**self.transform.gamma
            else:
                self.output = np.zeros_like(out)

            logger.debug(
                "render: output range = %s" %
                ([amin(self.output), amax(self.output)]))

    def saveFrame(self, fName):
        """FIXME: scaling behaviour still hast to be implemented (e.g. after setGamma)"""
        logger.info("saving frame as %s", fName)

        self.render()
        self.paintGL()
        glFlush()
        self.grabFrameBuffer().save(fName)

    def onRenderTimer(self):
        if self.renderUpdate:
            self.render()
            self.renderUpdate = False
            self.updateGL()

    def tex_coords_from_xyzoom(self, x0, y0, zoom):
        """returns array of texccords corners when zoomed
        in onto x0,y0 \in [0,1]
        
        zoom == 1   --> fully zoomed out
        zoom == 0   --> fully zoomed in (to x0,y0)
        """

        q0 = create_quad_coords([0, 1, 0, 1])
        q1 = create_quad_coords([x0, x0, y0, y0])

        return zoom * q0 + (1. - zoom) * q1

    def getRelativeCoords(self, x0, y0):
        w, h = self.getDataWidthHeight()

        w = w * self.width() / self._viewport_width
        h = w * self.height() / self._viewport_height

        x = 2. * (x0 - .5 * (self.width() - w)) / w - 1
        y = 2. * (y0 - .5 * (self.height() - h)) / h - 1

        x = (x0 - .5 * (self.width() - w)) / w
        y = 1 - (y0 - .5 * (self.height() - h)) / h

        return x, y

    def mousePressEvent(self, event):
        super(GLSliceWidget, self).mousePressEvent(event)

        if event.buttons() == QtCore.Qt.LeftButton:
            self._x0, self._y0 = self.getRelativeCoords(event.x(), event.y())

    def mouseMoveEvent(self, event):

        if event.buttons() == QtCore.Qt.LeftButton:
            x, y = self.getRelativeCoords(event.x(), event.y())
            self.zoom_x += self.zoom_fac * (self._x0 - x)
            self.zoom_y += self.zoom_fac * (self._y0 - y)
            self._x0, self._y0 = x, y
            self.zoom_x, self.zoom_y = clip(self.zoom_x, 0,
                                            1), clip(self.zoom_y, 0, 1)

        self.refresh()

    def wheelEvent(self, event):
        # get the zoom factor

        # print self.zoom_x,self.zoom_y
        # x, y = self.getRelativeCoords(event.x(),event.y())
        # self.zoom_x , self.zoom_y = clip(x ,0,1), clip(y,0,1)

        self.zoom_fac *= 1.4**(-event.angleDelta().y() / 1000.)
        self.zoom_fac = clip(self.zoom_fac, 0, 1.)

        self.refresh()
Exemple #6
0
class SquircleRenderer(QObject):  #QOpenGLFunctions
    """docstring for SquircleRenderer"""
    def __init__(self, parent=None):
        super(SquircleRenderer, self).__init__(parent)
        self.m_t = 0.0
        self.m_program = None
        self.m_viewportSize = QSize()

    def setT(self, t):
        self.m_t = t

    def setViewportSize(self, size):
        self.m_viewportSize = size

    def setWin(self, win):
        self.win = win

        ver = QOpenGLVersionProfile()
        ver.setVersion(2, 1)

        self.m_context = self.win.openglContext()
        self.gl = self.m_context.versionFunctions(ver)

    @pyqtSlot()
    def paint(self):
        if not self.m_program:
            self.gl.initializeOpenGLFunctions()

            self.m_program = QOpenGLShaderProgram(self)
            self.m_program.addShaderFromSourceCode(
                QOpenGLShader.Vertex, "attribute highp vec4 vertices;"
                "varying highp vec2 coords;"
                "void main() {"
                "    gl_Position = vertices;"
                "    coords = vertices.xy;"
                "}")
            self.m_program.addShaderFromSourceCode(
                QOpenGLShader.Fragment, "uniform lowp float t;"
                "varying highp vec2 coords;"
                "void main() {"
                "    lowp float i = 1. - (pow(abs(coords.x), 4.) + pow(abs(coords.y), 4.));"
                "    i = smoothstep(t - 0.8, t + 0.8, i);"
                "    i = floor(i * 20.) / 20.;"
                "    gl_FragColor = vec4(coords * .5 + .5, i, i);"
                "}")

            self.m_program.bindAttributeLocation("vertices", 0)

            self.m_program.link()

        self.m_program.bind()

        self.m_program.enableAttributeArray(0)

        values = [(-1, -1), (1, -1), (-1, 1), (1, 1)]

        self.m_program.setAttributeArray(0, values)

        self.m_program.setUniformValue("t", self.m_t)

        #print("DATA:",self.m_viewportSize.width(), self.m_viewportSize.height(), self.m_t)#, self.gl.glViewport)

        self.gl.glViewport(0, 0, self.m_viewportSize.width(),
                           self.m_viewportSize.height())

        self.gl.glDisable(self.gl.GL_DEPTH_TEST)

        self.gl.glClearColor(0, 0, 0, 1)

        self.gl.glClear(self.gl.GL_COLOR_BUFFER_BIT)

        self.gl.glEnable(self.gl.GL_BLEND)

        self.gl.glBlendFunc(self.gl.GL_SRC_ALPHA, self.gl.GL_ONE)

        self.gl.glDrawArrays(self.gl.GL_TRIANGLE_STRIP, 0, 4)

        self.m_program.disableAttributeArray(0)

        self.m_program.release()
Exemple #7
0
class ShaderProgram:
    def __init__(self):
        self._bindings = {}
        self._attribute_bindings = {}

        self._shader_program = None
        self._uniform_indices = {}
        self._attribute_indices = {}
        self._uniform_values = {}
        self._bound = False
        self._textures = {}

        self._debug_shader = False  # Set this to true to enable extra logging concerning shaders

    ##  Load a shader program file.
    #
    #   This method loads shaders from a simple text file, using Python's configparser
    #   as parser.
    #
    #   \note When writing shader program files, please note that configparser expects
    #   indented lines for multiline values. Since the shaders are provided as a single
    #   multiline string, make sure to indent them properly.
    #
    #   \param file_name The shader file to load.
    #   \param version can be used for a special version of the shader. it will be appended
    #          to the keys [vertex, fragment, geometry] in the shader file
    #
    #   \exception{InvalidShaderProgramError} Raised when the file provided does not contain any valid shaders.
    def load(self, file_name, version = ""):
        Logger.log("d", "Loading shader file [%s]...", file_name)

        vertex_key = "vertex" + version
        fragment_key = "fragment" + version
        geometry_key = "geometry" + version

        # Hashtags should not be ignored, they are part of GLSL.
        parser = configparser.ConfigParser(interpolation = None, comment_prefixes = (';', ))
        parser.optionxform = lambda option: option
        parser.read(file_name)

        if "shaders" not in parser:
            raise InvalidShaderProgramError("{0} is missing section [shaders]".format(file_name))

        if vertex_key not in parser["shaders"] or fragment_key not in parser["shaders"]:
            raise InvalidShaderProgramError("{0} is missing a shader [{1}, {2}]".format(file_name, vertex_key, fragment_key))

        vertex_code = parser["shaders"][vertex_key]
        if self._debug_shader:
            vertex_code_str = "\n".join(["%4i %s" % (i, s) for i, s in enumerate(vertex_code.split("\n"))])
            Logger.log("d", "Vertex shader")
            Logger.log("d", vertex_code_str)

        fragment_code = parser["shaders"][fragment_key]
        if self._debug_shader:
            fragment_code_str = "\n".join(["%4i %s" % (i, s) for i, s in enumerate(fragment_code.split("\n"))])
            Logger.log("d", "Fragment shader")
            Logger.log("d", fragment_code_str)

        self.setVertexShader(vertex_code)
        self.setFragmentShader(fragment_code)
        # Geometry shader is optional and only since version OpenGL 3.2 or with extension ARB_geometry_shader4
        if geometry_key in parser["shaders"]:
            code = parser["shaders"][geometry_key]
            if self._debug_shader:
                code_str = "\n".join(["%4i %s" % (i, s) for i, s in enumerate(code.split("\n"))])
                Logger.log("d", "Loading geometry shader... \n")
                Logger.log("d", code_str)
            self.setGeometryShader(code)

        self.build()

        if "defaults" in parser:
            for key, value in parser["defaults"].items():
                self.setUniformValue(key, ast.literal_eval(value), cache = True)

        if "bindings" in parser:
            for key, value in parser["bindings"].items():
                self.addBinding(key, value)

        if "attributes" in parser:
            for key, value in parser["attributes"].items():
                self.addAttributeBinding(key, value)

    ##  Set the vertex shader to use.
    #
    #   \param shader \type{string} The vertex shader to use.
    def setVertexShader(self, shader):
        if not self._shader_program:
            self._shader_program = QOpenGLShaderProgram()

        if not self._shader_program.addShaderFromSourceCode(QOpenGLShader.Vertex, shader):
            Logger.log("e", "Vertex shader failed to compile: %s", self._shader_program.log())

    ##  Set the fragment shader to use.
    #
    #   \param shader \type{string} The fragment shader to use.
    def setFragmentShader(self, shader):
        if not self._shader_program:
            self._shader_program = QOpenGLShaderProgram()

        if not self._shader_program.addShaderFromSourceCode(QOpenGLShader.Fragment, shader):
            Logger.log("e", "Fragment shader failed to compile: %s", self._shader_program.log())

    def setGeometryShader(self, shader):
        if not self._shader_program:
            self._shader_program = QOpenGLShaderProgram()

        if not self._shader_program.addShaderFromSourceCode(QOpenGLShader.Geometry, shader):
            Logger.log("e", "Geometry shader failed to compile: %s", self._shader_program.log())

    ##  Build the complete shader program out of the separately provided sources.
    def build(self):
        if not self._shader_program:
            Logger.log("e", "No shader sources loaded")
            return

        if not self._shader_program.link():
            Logger.log("e", "Shader failed to link: %s", self._shader_program.log())

    ##  Set a named uniform variable.
    #
    #   Unless otherwise specified as argument, the specified value will be cached so that
    #   it does not matter whether bind() has already been called. Instead, if the shader
    #   is not currently bound, the next call to bind() will update the uniform values.
    #
    #   \param name The name of the uniform variable.
    #   \param value The value to set the variable to.
    #   \param kwargs Keyword arguments.
    #                 Possible keywords:
    #                 - cache: False when the value should not be cached for later calls to bind().
    def setUniformValue(self, name, value, **kwargs):
        if not self._shader_program:
            return

        if name not in self._uniform_indices:
            self._uniform_indices[name] = self._shader_program.uniformLocation(name)

        uniform = self._uniform_indices[name]
        if uniform == -1:
            return

        if kwargs.get("cache", True):
            self._uniform_values[uniform] = value

        if self._bound:
            self._setUniformValueDirect(uniform, value)
    ##  Set a texture that should be bound to a specified texture unit when this shader is bound.
    #
    #   \param texture_unit \type{int} The texture unit to bind the texture to.
    #   \param texture \type{Texture} The texture object to bind to the texture unit.
    def setTexture(self, texture_unit, texture):
        if texture is None:
            if texture_unit in self._textures:
                del self._textures[texture_unit]
        else:
            self._textures[texture_unit] = texture

    ##  Enable a vertex attribute to be used.
    #
    #   \param name The name of the attribute to enable.
    #   \param type The type of the attribute. Should be a python type.
    #   \param offset The offset into a bound buffer where the data for this attribute starts.
    #   \param stride The stride of the attribute.
    #
    #   \note If the shader is not bound, this will bind the shader.
    def enableAttribute(self, name, type, offset, stride = 0):
        if not self._shader_program:
            return

        self.bind()

        if name not in self._attribute_indices:
            self._attribute_indices[name] = self._shader_program.attributeLocation(name)

        attribute = self._attribute_indices[name]
        if attribute == -1:
            return

        if type is "int":
            self._shader_program.setAttributeBuffer(attribute, 0x1404, offset, 1, stride) #GL_INT
        elif type is "float":
            self._shader_program.setAttributeBuffer(attribute, 0x1406, offset, 1, stride) #GL_FLOAT
        elif type is "vector2f":
            self._shader_program.setAttributeBuffer(attribute, 0x1406, offset, 2, stride) #GL_FLOAT
        elif type is "vector3f":
            self._shader_program.setAttributeBuffer(attribute, 0x1406, offset, 3, stride) #GL_FLOAT
        elif type is "vector4f":
            self._shader_program.setAttributeBuffer(attribute, 0x1406, offset, 4, stride) #GL_FLOAT

        self._shader_program.enableAttributeArray(attribute)

    ##  Disable a vertex attribute so it is no longer used.
    #
    #   \param name The name of the attribute to use.
    def disableAttribute(self, name):
        if not self._shader_program:
            return

        if name not in self._attribute_indices:
            return

        self._shader_program.disableAttributeArray(self._attribute_indices[name])

    ##  Bind the shader to use it for rendering.
    def bind(self):
        if not self._shader_program or not self._shader_program.isLinked():
            return

        if self._bound:
            return

        self._shader_program.bind()
        self._bound = True

        for uniform in self._uniform_values:
            self._setUniformValueDirect(uniform, self._uniform_values[uniform])

        for texture_unit, texture in self._textures.items():
            texture.bind(texture_unit)

    ##  Release the shader so it will no longer be used for rendering.
    def release(self):
        if not self._shader_program or not self._bound:
            return

        self._shader_program.release()
        self._bound = False

        for texture_unit, texture in self._textures.items():
            texture.release(texture_unit)

    ##  Add a uniform value binding.
    #
    #   Uniform value bindings are used to provide an abstraction between uniforms as set
    #   from code and uniforms as used from shaders. Each binding specifies a uniform name
    #   as key that should be mapped to a string that can be used to look up the value of
    #   the uniform.
    #
    #   \param key The name of the uniform to bind.
    #   \param value The string used to look up values for this uniform.
    def addBinding(self, key, value):
        self._bindings[value] = key

    ##  Remove a uniform value binding.
    #
    #   \param key The uniform to remove.
    def removeBinding(self, key):
        if key not in self._bindings:
            return

        del self._bindings[key]

    ##  Update the values of bindings.
    #
    #   \param kwargs Keyword arguments.
    #                 Each key should correspond to a binding name, with the
    #                 value being the value of the uniform.
    #
    #   \note By default, these values are not cached as they are expected to be continuously
    #         updated.
    def updateBindings(self, **kwargs):
        for key, value in kwargs.items():
            if key in self._bindings and value is not None:
                self.setUniformValue(self._bindings[key], value, cache = False)

    ##  Add an attribute binding.
    #
    #   Attribute bindings are similar to uniform value bindings, except they specify what
    #   what attribute name binds to which attribute in the shader.
    #
    #   TODO: Actually use these bindings. However, that kind of depends on a more freeform
    #   MeshData object as freeform bindings are rather useless when we only have 5 supported
    #   attributes.
    #
    #   \param key The identifier used in the shader for the attribute.
    #   \param value The name to bind to this attribute.
    def addAttributeBinding(self, key, value):
        self._attribute_bindings[key] = value

    ##  Remove an attribute binding.
    #
    #   \param key The name of the attribute binding to remove.
    def removeAttributeBinding(self, key):
        if key not in self._attribute_bindings:
            return

        del self._attribute_bindings[key]

    def _matrixToQMatrix4x4(self, m):
        return QMatrix4x4(m.at(0, 0), m.at(0, 1), m.at(0, 2), m.at(0, 3), m.at(1, 0), m.at(1, 1), m.at(1, 2), m.at(1, 3),
            m.at(2, 0), m.at(2, 1), m.at(2, 2), m.at(2, 3), m.at(3, 0), m.at(3, 1), m.at(3, 2), m.at(3, 3))

    def _setUniformValueDirect(self, uniform, value):
        if type(value) is Vector:
            self._shader_program.setUniformValue(uniform, QVector3D(value.x, value.y, value.z))
        elif type(value) is Matrix:
            self._shader_program.setUniformValue(uniform, self._matrixToQMatrix4x4(value))
        elif type(value) is Color:
            self._shader_program.setUniformValue(uniform,
                QColor(value.r * 255, value.g * 255, value.b * 255, value.a * 255))
        elif type(value) is list and len(value) is 2:
            self._shader_program.setUniformValue(uniform, QVector2D(value[0], value[1]))
        elif type(value) is list and len(value) is 3:
            self._shader_program.setUniformValue(uniform, QVector3D(value[0], value[1], value[2]))
        elif type(value) is list and len(value) is 4:
            self._shader_program.setUniformValue(uniform, QVector4D(value[0], value[1], value[2], value[3]))
        elif type(value) is list and type(value[0]) is list and len(value[0]) is 2:
            self._shader_program.setUniformValueArray(uniform, [QVector2D(i[0], i[1]) for i in value])
        else:
            self._shader_program.setUniformValue(uniform, value)
Exemple #8
0
class GLWidget(QGLWidget):

    clicked = pyqtSignal()

    PROGRAM_VERTEX_ATTRIBUTE, PROGRAM_TEXCOORD_ATTRIBUTE = range(2)

    vsrc = """
attribute highp vec4 vertex;
attribute mediump vec4 texCoord;
varying mediump vec4 texc;
uniform mediump mat4 matrix;
void main(void)
{
    gl_Position = matrix * vertex;
    texc = texCoord;
}
"""

    fsrc = """
uniform sampler2D texture;
varying mediump vec4 texc;
void main(void)
{
    gl_FragColor = texture2D(texture, texc.st);
}
"""

    coords = (((+1, -1, -1), (-1, -1, -1), (-1, +1, -1), (+1, +1, -1)),
              ((+1, +1, -1), (-1, +1, -1), (-1, +1, +1), (+1, +1, +1)),
              ((+1, -1, +1), (+1, -1, -1), (+1, +1, -1), (+1, +1, +1)),
              ((-1, -1, -1), (-1, -1, +1), (-1, +1, +1),
               (-1, +1, -1)), ((+1, -1, +1), (-1, -1, +1), (-1, -1, -1),
                               (+1, -1, -1)), ((-1, -1, +1), (+1, -1, +1),
                                               (+1, +1, +1), (-1, +1, +1)))

    def __init__(self, parent=None, shareWidget=None):
        super(GLWidget, self).__init__(parent, shareWidget)

        self.clearColor = Qt.black
        self.xRot = 0
        self.yRot = 0
        self.zRot = 0

        self.clearColor = QColor()
        self.lastPos = QPoint()

        self.program = None

    def minimumSizeHint(self):
        return QSize(50, 50)

    def sizeHint(self):
        return QSize(200, 200)

    def rotateBy(self, xAngle, yAngle, zAngle):
        self.xRot += xAngle
        self.yRot += yAngle
        self.zRot += zAngle
        self.updateGL()

    def setClearColor(self, color):
        self.clearColor = color
        self.updateGL()

    def initializeGL(self):
        self.makeObject()

        glEnable(GL_DEPTH_TEST)
        glEnable(GL_CULL_FACE)

        vshader = QOpenGLShader(QOpenGLShader.Vertex, self)
        vshader.compileSourceCode(self.vsrc)

        fshader = QOpenGLShader(QOpenGLShader.Fragment, self)
        fshader.compileSourceCode(self.fsrc)

        self.program = QOpenGLShaderProgram(self)
        self.program.addShader(vshader)
        self.program.addShader(fshader)
        self.program.bindAttributeLocation('vertex',
                                           self.PROGRAM_VERTEX_ATTRIBUTE)
        self.program.bindAttributeLocation('texCoord',
                                           self.PROGRAM_TEXCOORD_ATTRIBUTE)
        self.program.link()

        self.program.bind()
        self.program.setUniformValue('texture', 0)

        self.program.enableAttributeArray(self.PROGRAM_VERTEX_ATTRIBUTE)
        self.program.enableAttributeArray(self.PROGRAM_TEXCOORD_ATTRIBUTE)
        self.program.setAttributeArray(self.PROGRAM_VERTEX_ATTRIBUTE,
                                       self.vertices)
        self.program.setAttributeArray(self.PROGRAM_TEXCOORD_ATTRIBUTE,
                                       self.texCoords)

    def paintGL(self):
        self.qglClearColor(self.clearColor)
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

        m = QMatrix4x4()
        m.ortho(-0.5, 0.5, 0.5, -0.5, 4.0, 15.0)
        m.translate(0.0, 0.0, -10.0)
        m.rotate(self.xRot / 16.0, 1.0, 0.0, 0.0)
        m.rotate(self.yRot / 16.0, 0.0, 1.0, 0.0)
        m.rotate(self.zRot / 16.0, 0.0, 0.0, 1.0)

        self.program.setUniformValue('matrix', m)

        for i in range(6):
            glBindTexture(GL_TEXTURE_2D, self.textures[i])
            glDrawArrays(GL_TRIANGLE_FAN, i * 4, 4)

    def resizeGL(self, width, height):
        side = min(width, height)
        glViewport((width - side) // 2, (height - side) // 2, side, side)

    def mousePressEvent(self, event):
        self.lastPos = event.pos()

    def mouseMoveEvent(self, event):
        dx = event.x() - self.lastPos.x()
        dy = event.y() - self.lastPos.y()

        if event.buttons() & Qt.LeftButton:
            self.rotateBy(8 * dy, 8 * dx, 0)
        elif event.buttons() & Qt.RightButton:
            self.rotateBy(8 * dy, 0, 8 * dx)

        self.lastPos = event.pos()

    def mouseReleaseEvent(self, event):
        self.clicked.emit()

    def makeObject(self):
        self.textures = []
        self.texCoords = []
        self.vertices = []

        for i in range(6):
            self.textures.append(
                self.bindTexture(QPixmap(':/images/side%d.png' % (i + 1))))

            for j in range(4):
                self.texCoords.append(((j == 0 or j == 3), (j == 0 or j == 1)))

                x, y, z = self.coords[i][j]
                self.vertices.append((0.2 * x, 0.2 * y, 0.2 * z))
class ShaderProgram:
    """An abstract class for dealing with shader programs.

    This class provides an interface an some basic elements for dealing with
    shader programs. Shader programs are described in a simple text file
    based on the Python configparser module. These files contain the shaders
    for the different shader program stages, in addition to defaults that should
    be used for uniform values and uniform and attribute bindings.
    """
    def __init__(self) -> None:
        self._bindings = {}  # type: Dict[str, str]
        self._attribute_bindings = {}  # type: Dict[str, str]

        self._shader_program = None  # type: Optional[QOpenGLShaderProgram]
        self._uniform_indices = {}  # type: Dict[str, int]
        self._attribute_indices = {}  # type: Dict[str, int]
        self._uniform_values = {}  # type: Dict[int, Union[Vector, Matrix, Color, List[float], List[List[float]], float, int]]
        self._bound = False
        self._textures = {}  # type: Dict[int, Texture]

        self._debug_shader = False  # Set this to true to enable extra logging concerning shaders

    def load(self, file_name: str, version: str = "") -> None:
        """Load a shader program file.

        This method loads shaders from a simple text file, using Python's configparser
        as parser.

        :note When writing shader program files, please note that configparser expects
        indented lines for multiline values. Since the shaders are provided as a single
        multiline string, make sure to indent them properly.

        :param file_name: The shader file to load.
        :param version: can be used for a special version of the shader. it will be appended
        to the keys [vertex, fragment, geometry] in the shader file

        :exception{InvalidShaderProgramError} Raised when the file provided does not contain any valid shaders.
        """
        Logger.log("d", "Loading [%s]...", file_name)

        vertex_key = "vertex" + version
        fragment_key = "fragment" + version
        geometry_key = "geometry" + version

        # Hashtags should not be ignored, they are part of GLSL.
        parser = configparser.ConfigParser(interpolation = None, comment_prefixes = (';', ))
        parser.optionxform = lambda option: option  # type: ignore
        try:
            parser.read(file_name, encoding = "UTF-8")
        except EnvironmentError:
            raise InvalidShaderProgramError("{0} can't be opened for reading.".format(file_name))
        except UnicodeDecodeError:
            raise InvalidShaderProgramError("{0} contains invalid UTF-8 code. File corrupted?".format(file_name))
        except configparser.Error as e:
            raise InvalidShaderProgramError("{file_name} has broken config file syntax: {err}".format(file_name = file_name, err = str(e)))

        if "shaders" not in parser:
            raise InvalidShaderProgramError("{0} is missing section [shaders]".format(file_name))

        if vertex_key not in parser["shaders"] or fragment_key not in parser["shaders"]:
            raise InvalidShaderProgramError("{0} is missing a shader [{1}, {2}]".format(file_name, vertex_key, fragment_key))

        vertex_code = parser["shaders"][vertex_key]
        if self._debug_shader:
            vertex_code_str = "\n".join(["%4i %s" % (i, s) for i, s in enumerate(vertex_code.split("\n"))])
            Logger.log("d", "Vertex shader")
            Logger.log("d", vertex_code_str)

        fragment_code = parser["shaders"][fragment_key]
        if self._debug_shader:
            fragment_code_str = "\n".join(["%4i %s" % (i, s) for i, s in enumerate(fragment_code.split("\n"))])
            Logger.log("d", "Fragment shader")
            Logger.log("d", fragment_code_str)

        if not self.setVertexShader(vertex_code):
            raise InvalidShaderProgramError(f"Could not set vertex shader from '{file_name}'.")
        if not self.setFragmentShader(fragment_code):
            raise InvalidShaderProgramError(f"Could not set fragment shader from '{file_name}'.")
        # Geometry shader is optional and only since version OpenGL 3.2 or with extension ARB_geometry_shader4
        if geometry_key in parser["shaders"]:
            code = parser["shaders"][geometry_key]
            if self._debug_shader:
                code_str = "\n".join(["%4i %s" % (i, s) for i, s in enumerate(code.split("\n"))])
                Logger.log("d", "Loading geometry shader... \n")
                Logger.log("d", code_str)
            if not self.setGeometryShader(code):
                raise InvalidShaderProgramError(f"Could not set geometry shader from '{file_name}'.")

        self.build()

        if "defaults" in parser:
            for key, value in parser["defaults"].items():
                self.setUniformValue(key, ast.literal_eval(value), cache = True)

        if "bindings" in parser:
            for key, value in parser["bindings"].items():
                self.addBinding(key, value)

        if "attributes" in parser:
            for key, value in parser["attributes"].items():
                self.addAttributeBinding(key, value)

    def setVertexShader(self, shader: str) -> bool:
        """Set the vertex shader to use.

        :param shader: :type{string} The vertex shader to use.
        """
        if not self._shader_program:
            self._shader_program = QOpenGLShaderProgram()

        if not cast(QOpenGLShaderProgram, self._shader_program).addShaderFromSourceCode(QOpenGLShader.Vertex, shader):
            Logger.log("e", "Vertex shader failed to compile: %s", self._shader_program.log())
            return False

        return True

    def setFragmentShader(self, shader: str) -> bool:
        """Set the fragment shader to use.

        :param shader: :type{string} The fragment shader to use.
        """
        if not self._shader_program:
            self._shader_program = QOpenGLShaderProgram()

        if not cast(QOpenGLShaderProgram, self._shader_program).addShaderFromSourceCode(QOpenGLShader.Fragment, shader):
            Logger.log("e", "Fragment shader failed to compile: %s", self._shader_program.log())
            return False

        return True

    def setGeometryShader(self, shader: str) -> bool:
        if not self._shader_program:
            self._shader_program = QOpenGLShaderProgram()

        if not cast(QOpenGLShaderProgram, self._shader_program).addShaderFromSourceCode(QOpenGLShader.Geometry, shader):
            Logger.log("e", "Geometry shader failed to compile: %s", self._shader_program.log())
            return False

        return True

    def build(self) -> None:
        """Build the complete shader program out of the separately provided sources."""
        if not self._shader_program:
            Logger.log("e", "No shader sources loaded")
            return

        if not self._shader_program.link():
            Logger.log("e", "Shader failed to link: %s", self._shader_program.log())

    def setUniformValue(self, name: str, value: Union[Vector, Matrix, Color, List[float], List[List[float]], float, int], **kwargs: Any) -> None:
        """Set a named uniform variable.

        Unless otherwise specified as argument, the specified value will be cached so that
        it does not matter whether bind() has already been called. Instead, if the shader
        is not currently bound, the next call to bind() will update the uniform values.

        :param name: The name of the uniform variable.
        :param value: The value to set the variable to.
        :param kwargs: Keyword arguments.
        Possible keywords:
        - cache: False when the value should not be cached for later calls to bind().
        """
        if not self._shader_program:
            return

        if name not in self._uniform_indices and self._shader_program is not None:
            self._uniform_indices[name] = self._shader_program.uniformLocation(name)

        uniform = self._uniform_indices[name]
        if uniform == -1:
            return

        if kwargs.get("cache", True):
            self._uniform_values[uniform] = value

        if self._bound:
            self._setUniformValueDirect(uniform, value)

    def setTexture(self, texture_unit: int, texture: Texture) -> None:
        """Set a texture that should be bound to a specified texture unit when this shader is bound.

        :param texture_unit: :type{int} The texture unit to bind the texture to.
        :param texture: :type{Texture} The texture object to bind to the texture unit.
        """
        if texture is None:
            if texture_unit in self._textures:
                del self._textures[texture_unit]
        else:
            self._textures[texture_unit] = texture

    def enableAttribute(self, name: str, type: str, offset: int, stride: int = 0) -> None:
        """Enable a vertex attribute to be used.

        :param name: The name of the attribute to enable.
        :param type: The type of the attribute. Should be a python type.
        :param offset: The offset into a bound buffer where the data for this attribute starts.
        :param stride: The stride of the attribute.

        :note If the shader is not bound, this will bind the shader.
        """
        if not self._shader_program:
            return

        self.bind()

        if name not in self._attribute_indices:
            self._attribute_indices[name] = self._shader_program.attributeLocation(name)

        attribute = self._attribute_indices[name]
        if attribute == -1:
            return

        if type == "vector3f":
            self._shader_program.setAttributeBuffer(attribute, 0x1406, offset, 3, stride) #GL_FLOAT
        elif type == "vector2f":
            self._shader_program.setAttributeBuffer(attribute, 0x1406, offset, 2, stride)  # GL_FLOAT
        elif type == "vector4f":
            self._shader_program.setAttributeBuffer(attribute, 0x1406, offset, 4, stride)  # GL_FLOAT
        elif type == "int":
            self._shader_program.setAttributeBuffer(attribute, 0x1404, offset, 1, stride) #GL_INT
        elif type == "float":
            self._shader_program.setAttributeBuffer(attribute, 0x1406, offset, 1, stride) #GL_FLOAT

        self._shader_program.enableAttributeArray(attribute)

    def disableAttribute(self, name: str) -> None:
        """Disable a vertex attribute so it is no longer used.

        :param name: The name of the attribute to use.
        """
        if not self._shader_program:
            return

        if name not in self._attribute_indices:
            return

        self._shader_program.disableAttributeArray(self._attribute_indices[name])

    def bind(self) -> None:
        """Bind the shader to use it for rendering."""
        if self._bound:
            return

        if not self._shader_program or not self._shader_program.isLinked():
            return

        self._shader_program.bind()
        self._bound = True

        for uniform in self._uniform_values:
            self._setUniformValueDirect(uniform, self._uniform_values[uniform])

        for texture_unit, texture in self._textures.items():
            texture.bind(texture_unit)

    def release(self) -> None:
        """Release the shader so it will no longer be used for rendering."""
        if not self._shader_program or not self._bound:
            return

        self._shader_program.release()
        self._bound = False

        for texture_unit, texture in self._textures.items():
            texture.release(texture_unit)

    def addBinding(self, key: str, value: str) -> None:
        """Add a uniform value binding.

        Uniform value bindings are used to provide an abstraction between uniforms as set
        from code and uniforms as used from shaders. Each binding specifies a uniform name
        as key that should be mapped to a string that can be used to look up the value of
        the uniform.

        :param key: The name of the uniform to bind.
        :param value: The string used to look up values for this uniform.
        """
        self._bindings[value] = key

    def removeBinding(self, key: str) -> None:
        """Remove a uniform value binding.

        :param key: The uniform to remove.
        """
        if key not in self._bindings:
            return

        del self._bindings[key]

    def updateBindings(self, **kwargs) -> None:
        """Update the values of bindings.

        :param kwargs: Keyword arguments.
        Each key should correspond to a binding name, with the
        value being the value of the uniform.

        :note By default, these values are not cached as they are expected to be continuously
        updated.
        """
        for key, value in kwargs.items():
            if key in self._bindings and value is not None:
                self.setUniformValue(self._bindings[key], value, cache = False)

    def addAttributeBinding(self, key: str, value: str) -> None:
        """Add an attribute binding.

        Attribute bindings are similar to uniform value bindings, except they specify what
        what attribute name binds to which attribute in the shader.

        TODO: Actually use these bindings. However, that kind of depends on a more freeform
        MeshData object as freeform bindings are rather useless when we only have 5 supported
        attributes.

        :param key: The identifier used in the shader for the attribute.
        :param value: The name to bind to this attribute.
        """
        self._attribute_bindings[key] = value

    def removeAttributeBinding(self, key: str) -> None:
        """Remove an attribute binding.

        :param key: The name of the attribute binding to remove.
        """
        if key not in self._attribute_bindings:
            return

        del self._attribute_bindings[key]

    def getReferenceKey(self) -> str:
        """ Uniquely identify this specific shader-object with a string.
        """
        if not hasattr(self, "_reference_key"):
            self._reference_key = str(id(self))
        return self._reference_key

    def _matrixToQMatrix4x4(self, m):
        return QMatrix4x4(m.getData().flatten())

    def _setUniformValueDirect(self, uniform: int, value: Union[Vector, Matrix, Color, List[float], List[List[float]], float, int]) -> None:
        if type(value) is Vector:
            value = cast(Vector, value)
            cast(QOpenGLShaderProgram, self._shader_program).setUniformValue(uniform, QVector3D(value.x, value.y, value.z))
        elif type(value) is Matrix:
            cast(QOpenGLShaderProgram, self._shader_program).setUniformValue(uniform, self._matrixToQMatrix4x4(cast(Matrix, value)))
        elif type(value) is Color:
            value = cast(Color, value)
            cast(QOpenGLShaderProgram, self._shader_program).setUniformValue(uniform,
                QColor(round(value.r * 255), round(value.g * 255), round(value.b * 255), round(value.a * 255)))
        elif type(value) is list and type(cast(List[List[float]], value)[0]) is list and len(cast(List[List[float]], value)[0]) == 4:
            value = cast(List[List[float]], value)
            cast(QOpenGLShaderProgram, self._shader_program).setUniformValue(uniform, self._matrixToQMatrix4x4(Matrix(value)))
        elif type(value) is list and len(cast(List[float], value)) == 2:
            value = cast(List[float], value)
            cast(QOpenGLShaderProgram, self._shader_program).setUniformValue(uniform, QVector2D(value[0], value[1]))
        elif type(value) is list and len(cast(List[float], value)) == 3:
            value = cast(List[float], value)
            cast(QOpenGLShaderProgram, self._shader_program).setUniformValue(uniform, QVector3D(value[0], value[1], value[2]))
        elif type(value) is list and len(cast(List[float], value)) == 4:
            value = cast(List[float], value)
            cast(QOpenGLShaderProgram, self._shader_program).setUniformValue(uniform, QVector4D(value[0], value[1], value[2], value[3]))
        elif type(value) is list and type(cast(List[List[float]], value)[0]) is list and len(cast(List[List[float]], value)[0]) == 2:
            value = cast(List[List[float]], value)
            cast(QOpenGLShaderProgram, self._shader_program).setUniformValueArray(uniform, [QVector2D(i[0], i[1]) for i in value])
        else:
            cast(QOpenGLShaderProgram, self._shader_program).setUniformValue(uniform, cast(Union[float, int], value))
class ModelUnderlayRenderer(QObject):
    def __init__(self, parent=None):
        super(ModelUnderlayRenderer, self).__init__(parent)

        self._cube_shader = None
        self._sphere_shader = None
        self._viewport_size = QSize()
        self._window = None
        self._camera = Camera()

        self._perspective_projection_matrix = None
        self._orthographic_projection_matrix = None

        self._model_matrix = np.identity(4)

        self._projection_type = 0
        self._projection_matrix = perspective_projection(
            45.0, 640.0 / 480.0, 0.001, 1000.0)

        self._index_buffer = -1

        # keep track of the objects in the scene
        self._cube_model = Cube()
        self._sphere_model = Sphere()

        self._models = dict()
        self._models[self._cube_model] = []
        self._models[self._sphere_model] = []

    @pyqtSlot()
    def paint(self):
        # for Darwin, it's a must
        if pf.uname().system == 'Darwin':
            global GL
            GL = self._window.openglContext().versionFunctions()

        w = self._viewport_size.width()
        h = self._viewport_size.height()

        GL.glViewport(0, 0, int(w), int(h))
        GL.glClearColor(0.1, 0.1, 0.1, 1)
        GL.glEnable(GL.GL_DEPTH_TEST)
        GL.glClear(GL.GL_COLOR_BUFFER_BIT)
        GL.glClear(GL.GL_DEPTH_BUFFER_BIT)
        #
        # vertices_block = np.vstack((self._cube_model.vertices, self._sphere_model.vertices))
        # colors_block = np.vstack((self._cube_model.colors, self._sphere_model))
        #
        # if len(self._objects) > 1:
        # 	for v in self._vertices[1:]:
        # 		vertices_block = np.vstack((vertices_block, v))
        # 	for idx, c in enumerate(self._colors[1:]):
        # 		if not c:
        # 			c = [[0.6, 0.6, 0.7] for i in range(len(self._vertices[idx]))]
        # 		colors_block = np.vstack((colors_block, c))
        # 	for i in self._indices[1:]:
        # 		indices_block = np.hstack((indices_block, i))
        view_matrix = np.identity(4)
        view_matrix[2][3] = -30

        if self._cube_shader is None:
            self._cube_shader = QOpenGLShaderProgram()
            self._cube_shader.addShaderFromSourceFile(
                QOpenGLShader.Vertex, 'shaders/OpenGL_2_1/vertex.glsl')
            self._cube_shader.addShaderFromSourceFile(
                QOpenGLShader.Fragment, 'shaders/OpenGL_2_1/fragment.glsl')
            self._cube_shader.bindAttributeLocation('position', 0)
            self._cube_shader.bindAttributeLocation('color', 1)
            self._cube_shader.link()

        self._cube_shader.bind()
        self._cube_shader.enableAttributeArray(0)
        self._cube_shader.enableAttributeArray(1)
        self._cube_shader.setAttributeArray(0,
                                            self._cube_model.vertices.tolist())
        self._cube_shader.setAttributeArray(1,
                                            self._cube_model.colors.tolist())
        # view_matrix = self._camera.get_view_matrix()
        self._cube_shader.setUniformValue(
            'view_matrix',
            QMatrix4x4(view_matrix.flatten().tolist()).transposed())
        self._cube_shader.setUniformValue(
            'projection_matrix',
            QMatrix4x4(
                self._projection_matrix.flatten().tolist()).transposed())

        if self._cube_model in self._models.keys():
            for entity in self._models[self._cube_model]:
                m = create_transformation_matrix(entity.position,
                                                 entity.rotation, entity.scale)
                self._cube_shader.setUniformValue(
                    'model_matrix', QMatrix4x4(m.flatten().tolist()))
                GL.glDrawElements(GL.GL_TRIANGLES,
                                  len(self._cube_model.indices),
                                  GL.GL_UNSIGNED_INT,
                                  self._cube_model.indices.tolist())

        self._cube_shader.disableAttributeArray(0)
        self._cube_shader.disableAttributeArray(1)
        self._cube_shader.release()

        if self._sphere_shader is None:
            self._sphere_shader = QOpenGLShaderProgram()
            self._sphere_shader.addShaderFromSourceFile(
                QOpenGLShader.Vertex, 'shaders/OpenGL_2_1/vertex.glsl')
            self._sphere_shader.addShaderFromSourceFile(
                QOpenGLShader.Fragment, 'shaders/OpenGL_2_1/fragment.glsl')
            self._sphere_shader.bindAttributeLocation('position', 0)
            self._sphere_shader.bindAttributeLocation('color', 1)
            self._sphere_shader.link()

        self._sphere_shader.bind()
        self._sphere_shader.enableAttributeArray(0)
        self._sphere_shader.enableAttributeArray(1)
        self._sphere_shader.setAttributeArray(
            0, self._sphere_model.vertices.tolist())
        self._sphere_shader.setAttributeArray(
            1, self._sphere_model.colors.tolist())
        self._sphere_shader.setUniformValue(
            'view_matrix',
            QMatrix4x4(view_matrix.flatten().tolist()).transposed())
        self._sphere_shader.setUniformValue(
            'projection_matrix',
            QMatrix4x4(
                self._projection_matrix.flatten().tolist()).transposed())

        if self._sphere_model in self._models.keys():
            for entity in self._models[self._sphere_model]:
                m = create_transformation_matrix(entity.position,
                                                 entity.rotation, entity.scale)
                self._cube_shader.setUniformValue(
                    'model_matrix', QMatrix4x4(m.flatten().tolist()))
                GL.glDrawElements(GL.GL_TRIANGLES,
                                  len(self._sphere_model.indices),
                                  GL.GL_UNSIGNED_INT,
                                  self._sphere_model.indices.tolist())
        self._sphere_shader.disableAttributeArray(0)
        self._sphere_shader.disableAttributeArray(1)
        self._sphere_shader.release()

        # def build_rotation_matrix (t):
        # 	m = np.identity(4)
        # 	m[0][0] = np.cos(np.radians(t))
        # 	m[0][2] = np.sin(np.radians(t))
        # 	m[2][0] = -np.sin(np.radians(t))
        # 	m[2][2] = np.cos(np.radians(t))
        # 	return m
        #
        # global theta
        # theta += 1
        # self._model_matrix = build_rotation_matrix(theta)
        # self._model_matrix[2][3] = -3

        # Restore the OpenGL state for QtQuick rendering
        self._window.resetOpenGLState()
        self._window.update()

    def set_viewport_size(self, size):
        self._viewport_size = size

    def set_window(self, window):
        self._window = window

    def set_projection_matrix(self):
        # Need to be set every time we change the size of the window
        self._projection_matrix = perspective_projection(
            45.0,
            self._window.width() / self._window.height(), 0.001, 1000.0)

    def move_model(self, val):
        self._model_matrix[2][3] += val

    def move_camera(self):
        pass

    def add_geometry(self, geo_enum):
        if geo_enum == 0:
            self._models[self._cube_model].append(
                Entity(
                    self._cube_model,
                    np.array([
                        random.uniform(-3.0, 3.0),
                        random.uniform(-3.0, 3.0),
                        random.uniform(-20.0, -10.0)
                    ]),
                    np.array([
                        random.uniform(-45.0, 45.0),
                        random.uniform(-45.0, 45.0),
                        random.uniform(-45.0, 45.0)
                    ]), np.array([1.0, 1.0, 1.0])))
        elif geo_enum == 1:
            self._models[self._sphere_model].append(
                Entity(
                    self._sphere_model,
                    np.array([
                        random.uniform(-3.0, 3.0),
                        random.uniform(-3.0, 3.0),
                        random.uniform(-20.0, -10.0)
                    ]),
                    np.array([
                        random.uniform(-30.0, 30.0),
                        random.uniform(-30.0, 30.0),
                        random.uniform(-30.0, 30.0)
                    ]), np.array([1.0, 1.0, 1.0])))
        else:
            return

    def delete_geometry(self, geo_enum):
        if geo_enum == 0:
            if self._models[self._cube_model]:
                self._models[self._cube_model].pop()
        elif geo_enum == 1:
            if self._models[self._sphere_model]:
                self._models[self._sphere_model].pop()

    def change_random_cube_color(self):
        tmp = self._models[self._cube_model]
        self._models.pop(self._cube_model)
        self._cube_model = Cube()
        self._models[self._cube_model] = tmp

    def change_random_sphere_color(self):
        tmp = self._models[self._sphere_model]
        self._models.pop(self._sphere_model)
        self._sphere_model = Sphere()
        self._models[self._sphere_model] = tmp
Exemple #11
0
class GLSliceWidget(QtOpenGL.QGLWidget):
    _dataModelChanged = QtCore.pyqtSignal()

    def __init__(self, parent=None, interpolation="linear", **kwargs):
        logger.debug("init")

        super(GLSliceWidget, self).__init__(parent, **kwargs)

        self.renderUpdate = True
        self.parent = parent

        self.setAcceptDrops(True)

        self.texture_LUT = None
        self.setTransform(TransformModel())

        self.renderTimer = QtCore.QTimer(self)
        self.renderTimer.setInterval(50)
        self.renderTimer.timeout.connect(self.onRenderTimer)
        self.renderTimer.start()

        self.dataModel = None

        self.dataPos = 0
        self.slicePos = 0

        self.zoom_fac = 1.
        self.zoom_x = 0.5
        self.zoom_y = 0.5
        # the center in tex coords
        self.zoom_cx = 0.5
        self.zoom_cy = 0.5

        interpolation_vals = ("linear", "nearest")
        if not interpolation in interpolation_vals:
            raise KeyError("interpolation = '%s' not defined ,valid: %s" % (interpolation, str(interpolation_vals)))

        self.interp = (interpolation =="linear")
        # self.refresh()

    def setModel(self, dataModel):
        logger.debug("setModel")

        self.dataModel = dataModel

        if self.dataModel:
            self.transform.setModel(dataModel)

            self.dataModel._dataSourceChanged.connect(self.dataSourceChanged)
            self.dataModel._dataPosChanged.connect(self.dataPosChanged)
            self._dataModelChanged.connect(self.dataModelChanged)
            self._dataModelChanged.emit()

    def setTransform(self, transform):
        self.transform = transform
        self.transform._transformChanged.connect(self.refresh)

    def dragEnterEvent(self, event):
        if event.mimeData().hasUrls():
            event.accept()
        else:
            event.ignore()

    def dropEvent(self, event):
        for url in event.mimeData().urls():
            path = url.toLocalFile().toLocal8Bit().data()
            if self.dataModel:
                self.dataModel.loadFromPath(path, prefetchSize=self.N_PREFETCH)
            else:
                self.setModel(DataModel.fromPath(path, prefetchSize=self.N_PREFETCH))

    def set_colormap(self, name):
        """arr should be of shape (N,3) and gives the rgb components of the colormap"""

        try:
            arr = spimagine.config.__COLORMAPDICT__[name]
            self.makeCurrent()
            self.texture_LUT = fillTexture2d(arr.reshape((1,) + arr.shape), self.texture_LUT, self.interp)
        except:
            print("could not load colormap %s" % name)

    def set_colormap_rgb(self, color=[1., 1., 1.]):
        self._set_colormap_array(outer(linspace(0, 1., 255), np.array(color)))

    def _set_colormap_array(self, arr):
        """arr should be of shape (N,3) and gives the rgb components of the colormap"""

        self.makeCurrent()
        self.texture_LUT = fillTexture2d(arr.reshape((1,) + arr.shape), self.texture_LUT, self.interp)
        self.refresh()

    def initializeGL(self):

        self.resized = True

        self.output = zeros((100, 100))

        logger.debug("initializeGL")

        self.programTex = QOpenGLShaderProgram()
        self.programTex.addShaderFromSourceCode(QOpenGLShader.Vertex, vertShaderTex)
        self.programTex.addShaderFromSourceCode(QOpenGLShader.Fragment, fragShaderTex)
        self.programTex.link()
        self.programTex.bind()
        logger.debug("GLSL programTex log:%s", self.programTex.log())

        glClearColor(0, 0, 0, 1.)

        self.texture = None

        self.quadCoord = np.array([[-1., -1., 0.],
                                   [1., -1., 0.],
                                   [1., 1., 0.],
                                   [1., 1., 0.],
                                   [-1., 1., 0.],
                                   [-1., -1., 0.]])

        self.quadCoordTex = np.array([[0, 0],
                                      [1., 0.],
                                      [1., 1.],
                                      [1., 1.],
                                      [0, 1.],
                                      [0, 0]])

        self.set_colormap(spimagine.config.__DEFAULTCOLORMAP__)

        glDisable(GL_DEPTH_TEST)
        glEnable(GL_BLEND)

        glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)

    def dataModelChanged(self):
        # if self.dataModel:
        #     self.transform.reset(amin(self.dataModel[0]),
        #                          amax(self.dataModel[0]),
        #                          self.dataModel.stackUnits())
        #

        self.refresh()

    def dataSourceChanged(self):
        # self.transform.reset(amin(self.dataModel[0]),
        #                      amax(self.dataModel[0]),
        #                      self.dataModel.stackUnits())
        self.refresh()

    def dataPosChanged(self, pos):
        self.dataPos = pos
        self.refresh()

    def refresh(self):
        # if self.parentWidget() and self.dataModel:
        #     self.parentWidget().setWindowTitle("SpImagine %s"%self.dataModel.name())
        self.renderUpdate = True

    def resizeGL(self, width, height):
        # height = max(10,height)

        self._viewport_width, self._viewport_height = width, height

        self.resized = True
        self.resetViewPort()

    def getDataWidthHeight(self):
        if not self.dataModel:
            return 1, 1

        dim = array(self.dataModel.size()[1:])[::-1].astype(np.float32)

        dim *= array(self.transform.stackUnits)

        if self.transform.sliceDim == 0:
            dim = dim[[2, 1]]
        elif self.transform.sliceDim == 1:
            dim = dim[[0, 2]]
        elif self.transform.sliceDim == 2:
            dim = dim[[0, 1]]

        w, h = dim[0], dim[1]

        fac = min(1. * self._viewport_width / w, 1. * self._viewport_height / h)

        return int(fac * w), int(fac * h)

    def resetViewPort(self):
        w, h = self.getDataWidthHeight()
        glViewport((self._viewport_width - w) // 2, (self._viewport_height - h) // 2, w, h)

    def paintGL(self):

        self.makeCurrent()

        if not glCheckFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE:
            return

        # hack
        if self.resized:
            self.resetViewPort()

        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

        if self.dataModel:
            # Draw the render texture
            self.programTex.bind()

            self.texture = fillTexture2d(self.output, self.texture, self.interp)

            glEnable(GL_TEXTURE_2D)
            glDisable(GL_DEPTH_TEST)

            self.programTex.enableAttributeArray("position")
            self.programTex.enableAttributeArray("texcoord")
            self.programTex.setAttributeArray("position", self.quadCoord)
            self.programTex.setAttributeArray("texcoord",
                                              self.tex_coords_from_xyzoom(self.zoom_x, self.zoom_y, self.zoom_fac))

            glActiveTexture(GL_TEXTURE0)
            glBindTexture(GL_TEXTURE_2D, self.texture)
            self.programTex.setUniformValue("texture", 0)

            glActiveTexture(GL_TEXTURE1)
            glBindTexture(GL_TEXTURE_2D, self.texture_LUT)
            self.programTex.setUniformValue("texture_LUT", 1)

            glDrawArrays(GL_TRIANGLES, 0, len(self.quadCoord))

    def render(self):
        logger.debug("render")
        if self.dataModel:
            if self.transform.sliceDim == 0:
                out = fliplr(self.dataModel[self.transform.dataPos][:, :, self.transform.slicePos].T)
            elif self.transform.sliceDim == 1:
                out = self.dataModel[self.transform.dataPos][:, self.transform.slicePos, :]
            elif self.transform.sliceDim == 2:
                out = self.dataModel[self.transform.dataPos][self.transform.slicePos, :, :]

            min_out, max_out = self.transform.minVal, self.transform.maxVal

            if max_out > min_out:
                self.output = np.maximum(0,(1. * (out - min_out) / (max_out - min_out))) ** self.transform.gamma
            else:
                self.output = np.zeros_like(out)

            logger.debug("render: output range = %s" % ([amin(self.output), amax(self.output)]))

    def saveFrame(self, fName):
        """FIXME: scaling behaviour still hast to be implemented (e.g. after setGamma)"""
        logger.info("saving frame as %s", fName)

        self.render()
        self.paintGL()
        glFlush()
        self.grabFrameBuffer().save(fName)

    def onRenderTimer(self):
        if self.renderUpdate:
            self.render()
            self.renderUpdate = False
            self.updateGL()

    def tex_coords_from_xyzoom(self, x0, y0, zoom):
        """returns array of texccords corners when zoomed
        in onto x0,y0 \in [0,1]
        
        zoom == 1   --> fully zoomed out
        zoom == 0   --> fully zoomed in (to x0,y0)
        """

        q0 = create_quad_coords([0, 1, 0, 1])
        q1 = create_quad_coords([x0, x0, y0, y0])

        return zoom * q0 + (1. - zoom) * q1

    def getRelativeCoords(self, x0, y0):
        w, h = self.getDataWidthHeight()

        w = w * self.width() / self._viewport_width
        h = w * self.height() / self._viewport_height

        x = 2. * (x0 - .5 * (self.width() - w)) / w - 1
        y = 2. * (y0 - .5 * (self.height() - h)) / h - 1

        x = (x0 - .5 * (self.width() - w)) / w
        y = 1 - (y0 - .5 * (self.height() - h)) / h

        return x, y

    def mousePressEvent(self, event):
        super(GLSliceWidget, self).mousePressEvent(event)

        if event.buttons() == QtCore.Qt.LeftButton:
            self._x0, self._y0 = self.getRelativeCoords(event.x(), event.y())

    def mouseMoveEvent(self, event):

        if event.buttons() == QtCore.Qt.LeftButton:
            x, y = self.getRelativeCoords(event.x(), event.y())
            self.zoom_x += self.zoom_fac * (self._x0 - x)
            self.zoom_y += self.zoom_fac * (self._y0 - y)
            self._x0, self._y0 = x, y
            self.zoom_x, self.zoom_y = clip(self.zoom_x, 0, 1), clip(self.zoom_y, 0, 1)

        self.refresh()

    def wheelEvent(self, event):
        # get the zoom factor

        # print self.zoom_x,self.zoom_y
        # x, y = self.getRelativeCoords(event.x(),event.y())
        # self.zoom_x , self.zoom_y = clip(x ,0,1), clip(y,0,1)



        self.zoom_fac *= 1.4 ** (-event.angleDelta().y() / 1000.)
        self.zoom_fac = clip(self.zoom_fac, 0, 1.)

        self.refresh()
Exemple #12
0
class QtShaderProgram(ShaderProgram):
    def __init__(self):
        super().__init__()

        self._shader_program = None
        self._uniform_indices = {}
        self._attribute_indices = {}
        self._uniform_values = {}
        self._bound = False
        self._textures = {}

    def setVertexShader(self, shader):
        if not self._shader_program:
            self._shader_program = QOpenGLShaderProgram()

        if not self._shader_program.addShaderFromSourceCode(QOpenGLShader.Vertex, shader):
            Logger.log("e", "Vertex shader failed to compile: %s", self._shader_program.log())

    def setFragmentShader(self, shader):
        if not self._shader_program:
            self._shader_program = QOpenGLShaderProgram()

        if not self._shader_program.addShaderFromSourceCode(QOpenGLShader.Fragment, shader):
            Logger.log("e", "Fragment shader failed to compile: %s", self._shader_program.log())

    def build(self):
        if not self._shader_program:
            Logger.log("e", "No shader sources loaded")
            return

        if not self._shader_program.link():
            Logger.log("e", "Shader failed to link: %s", self._shader_program.log())

    def setUniformValue(self, name, value, **kwargs):
        if not self._shader_program:
            return

        if name not in self._uniform_indices:
            self._uniform_indices[name] = self._shader_program.uniformLocation(name)

        uniform = self._uniform_indices[name]
        if uniform == -1:
            return

        if kwargs.get("cache", True):
            self._uniform_values[uniform] = value

        if self._bound:
            self._setUniformValueDirect(uniform, value)

    def setTexture(self, texture_unit, texture):
        if texture is None:
            if texture_unit in self._textures:
                del self._textures[texture_unit]
        else:
            self._textures[texture_unit] = texture

    def enableAttribute(self, name, type, offset, stride = 0):
        if not self._shader_program:
            return

        self.bind()

        if name not in self._attribute_indices:
            self._attribute_indices[name] = self._shader_program.attributeLocation(name)

        attribute = self._attribute_indices[name]
        if attribute == -1:
            return

        if type is "int":
            self._shader_program.setAttributeBuffer(attribute, 0x1404, offset, 1, stride) #GL_INT
        elif type is "float":
            self._shader_program.setAttributeBuffer(attribute, 0x1406, offset, 1, stride) #GL_FLOAT
        elif type is "vector2f":
            self._shader_program.setAttributeBuffer(attribute, 0x1406, offset, 2, stride) #GL_FLOAT
        elif type is "vector3f":
            self._shader_program.setAttributeBuffer(attribute, 0x1406, offset, 3, stride) #GL_FLOAT
        elif type is "vector4f":
            self._shader_program.setAttributeBuffer(attribute, 0x1406, offset, 4, stride) #GL_FLOAT

        self._shader_program.enableAttributeArray(attribute)


    def disableAttribute(self, name):
        if not self._shader_program:
            return

        if name not in self._attribute_indices:
            return

        self._shader_program.disableAttributeArray(self._attribute_indices[name])

    def bind(self):
        if not self._shader_program or not self._shader_program.isLinked():
            return

        if self._bound:
            return

        self._bound = True
        self._shader_program.bind()

        for uniform in self._uniform_values:
            self._setUniformValueDirect(uniform, self._uniform_values[uniform])

        for texture_unit, texture in self._textures.items():
            texture.bind(texture_unit)

    def release(self):
        if not self._shader_program or not self._bound:
            return

        self._bound = False
        self._shader_program.release()

        for texture_unit, texture in self._textures.items():
            texture.release(texture_unit)

    def _matrixToQMatrix4x4(self, m):
        return QMatrix4x4(m.at(0,0), m.at(0, 1), m.at(0, 2), m.at(0, 3),
                          m.at(1,0), m.at(1, 1), m.at(1, 2), m.at(1, 3),
                          m.at(2,0), m.at(2, 1), m.at(2, 2), m.at(2, 3),
                          m.at(3,0), m.at(3, 1), m.at(3, 2), m.at(3, 3))

    def _setUniformValueDirect(self, uniform, value):
        if type(value) is Vector:
            self._shader_program.setUniformValue(uniform, QVector3D(value.x, value.y, value.z))
        elif type(value) is Matrix:
            self._shader_program.setUniformValue(uniform, self._matrixToQMatrix4x4(value))
        elif type(value) is Color:
            self._shader_program.setUniformValue(uniform, QColor(value.r * 255, value.g * 255, value.b * 255, value.a * 255))
        elif type(value) is list and len(value) is 2:
            self._shader_program.setUniformValue(uniform, QVector2D(value[0], value[1]))
        elif type(value) is list and len(value) is 3:
            self._shader_program.setUniformValue(uniform, QVector3D(value[0], value[1], value[2]))
        elif type(value) is list and len(value) is 4:
            self._shader_program.setUniformValue(uniform, QVector4D(value[0], value[1], value[2], value[3]))
        elif type(value) is list and type(value[0]) is list and len(value[0]) is 2:
            self._shader_program.setUniformValueArray(uniform, [QVector2D(i[0], i[1]) for i in value])
        else:
            self._shader_program.setUniformValue(uniform, value)
Exemple #13
0
class MyWidget(QtOpenGL.QGLWidget):
    def __init__(self, parent = None):
        super(MyWidget, self).__init__(parent)

        self.quadCoord = np.array([[-1., -1., 0.],
                                   [1., -1., 0.],
                                   [1., 1., 0.],
                                   [1., 1., 0.],
                                   [-1., 1., 0.],
                                   [-1., -1., 0.]])

        self.quadCoordTex = np.array([[0, 0],
                                      [1., 0.],
                                      [1., 1.],
                                      [1., 1.],
                                      [0, 1.],
                                      [0, 0]])

    def initializeGL(self):
        GL.glClearColor(1.0, 0.0, 0.0, 1.0)
        GL.glEnable(GL.GL_BLEND)
        GL.glBlendFunc (GL.GL_SRC_ALPHA, GL.GL_ONE_MINUS_SRC_ALPHA)
        GL.glClear(GL.GL_COLOR_BUFFER_BIT)

        print("OpenGL.GL: " + str(GL.glGetString(GL.GL_VERSION)))
        print("GL.GLSL: " + str(GL.glGetString(GL.GL_SHADING_LANGUAGE_VERSION)))
        print("OpenGL ATTRIBUTES:\n",", ".join(d for d in dir(GL) if d.startswith("GL_")))

        self.program = QOpenGLShaderProgram()
        self.program.addShaderFromSourceCode(QOpenGLShader.Vertex, """#version 120
        attribute vec2 position;
        attribute vec2 texcoord;
        varying vec2 mytexcoord;
        void main() {
            gl_Position = vec4(position, 0., 1.0);
            mytexcoord = texcoord;
        }""")

        self.program.addShaderFromSourceCode(QOpenGLShader.Fragment, """#version 120
        uniform sampler2D texture;
        varying vec2 mytexcoord;
        void main() {
            
            gl_FragColor = texture2D(texture,mytexcoord);
        }""")
        print(self.program.log())
        self.program.link()

        self.texture = fillTexture2d(np.outer(np.linspace(0, 1, 128), np.ones(128)))

    def paintGL(self):
        #GL.glClear(GL.GL_COLOR_BUFFER_BIT)
        self.program.bind()

        self.program.enableAttributeArray("position")
        self.program.enableAttributeArray("texcoord")
        self.program.setAttributeArray("position", self.quadCoord)
        self.program.setAttributeArray("texcoord", self.quadCoordTex)

        GL.glActiveTexture(GL.GL_TEXTURE0)
        GL.glBindTexture(GL.GL_TEXTURE_2D, self.texture)
        self.program.setUniformValue("texture", 0)

        GL.glDrawArrays(GL.GL_TRIANGLES, 0, len(self.quadCoord))
Exemple #14
0
class GLWidget(QOpenGLWidget):

    clicked = pyqtSignal()

    PROGRAM_VERTEX_ATTRIBUTE, PROGRAM_TEXCOORD_ATTRIBUTE = range(2)

    vsrc = """
attribute highp vec4 vertex;
attribute mediump vec4 texCoord;
varying mediump vec4 texc;
uniform mediump mat4 matrix;
void main(void)
{
    gl_Position = matrix * vertex;
    texc = texCoord;
}
"""

    fsrc = """
uniform sampler2D texture;
varying mediump vec4 texc;
void main(void)
{
    gl_FragColor = texture2D(texture, texc.st);
}
"""

    coords = (
        (( +1, -1, -1 ), ( -1, -1, -1 ), ( -1, +1, -1 ), ( +1, +1, -1 )),
        (( +1, +1, -1 ), ( -1, +1, -1 ), ( -1, +1, +1 ), ( +1, +1, +1 )),
        (( +1, -1, +1 ), ( +1, -1, -1 ), ( +1, +1, -1 ), ( +1, +1, +1 )),
        (( -1, -1, -1 ), ( -1, -1, +1 ), ( -1, +1, +1 ), ( -1, +1, -1 )),
        (( +1, -1, +1 ), ( -1, -1, +1 ), ( -1, -1, -1 ), ( +1, -1, -1 )),
        (( -1, -1, +1 ), ( +1, -1, +1 ), ( +1, +1, +1 ), ( -1, +1, +1 ))
    )

    def __init__(self, parent=None):
        super(GLWidget, self).__init__(parent)

        self.clearColor = QColor(Qt.black)
        self.xRot = 0
        self.yRot = 0
        self.zRot = 0
        self.program = None

        self.lastPos = QPoint()

    def minimumSizeHint(self):
        return QSize(50, 50)

    def sizeHint(self):
        return QSize(200, 200)

    def rotateBy(self, xAngle, yAngle, zAngle):
        self.xRot += xAngle
        self.yRot += yAngle
        self.zRot += zAngle
        self.update()

    def setClearColor(self, color):
        self.clearColor = color
        self.update()

    def initializeGL(self):
        self.gl = self.context().versionFunctions()
        self.gl.initializeOpenGLFunctions()

        self.makeObject()

        self.gl.glEnable(self.gl.GL_DEPTH_TEST)
        self.gl.glEnable(self.gl.GL_CULL_FACE)

        vshader = QOpenGLShader(QOpenGLShader.Vertex, self)
        vshader.compileSourceCode(self.vsrc)

        fshader = QOpenGLShader(QOpenGLShader.Fragment, self)
        fshader.compileSourceCode(self.fsrc)

        self.program = QOpenGLShaderProgram()
        self.program.addShader(vshader)
        self.program.addShader(fshader)
        self.program.bindAttributeLocation('vertex',
                self.PROGRAM_VERTEX_ATTRIBUTE)
        self.program.bindAttributeLocation('texCoord',
                self.PROGRAM_TEXCOORD_ATTRIBUTE)
        self.program.link()

        self.program.bind()
        self.program.setUniformValue('texture', 0)

        self.program.enableAttributeArray(self.PROGRAM_VERTEX_ATTRIBUTE)
        self.program.enableAttributeArray(self.PROGRAM_TEXCOORD_ATTRIBUTE)
        self.program.setAttributeArray(self.PROGRAM_VERTEX_ATTRIBUTE,
                self.vertices)
        self.program.setAttributeArray(self.PROGRAM_TEXCOORD_ATTRIBUTE,
                self.texCoords)

    def paintGL(self):
        self.gl.glClearColor(self.clearColor.redF(), self.clearColor.greenF(),
                self.clearColor.blueF(), self.clearColor.alphaF())
        self.gl.glClear(
                self.gl.GL_COLOR_BUFFER_BIT | self.gl.GL_DEPTH_BUFFER_BIT)

        m = QMatrix4x4()
        m.ortho(-0.5, 0.5, 0.5, -0.5, 4.0, 15.0)
        m.translate(0.0, 0.0, -10.0)
        m.rotate(self.xRot / 16.0, 1.0, 0.0, 0.0)
        m.rotate(self.yRot / 16.0, 0.0, 1.0, 0.0)
        m.rotate(self.zRot / 16.0, 0.0, 0.0, 1.0)

        self.program.setUniformValue('matrix', m)

        for i, texture in enumerate(self.textures):
            texture.bind()
            self.gl.glDrawArrays(self.gl.GL_TRIANGLE_FAN, i * 4, 4)

    def resizeGL(self, width, height):
        side = min(width, height)
        self.gl.glViewport((width - side) // 2, (height - side) // 2, side,
                side)

    def mousePressEvent(self, event):
        self.lastPos = event.pos()

    def mouseMoveEvent(self, event):
        dx = event.x() - self.lastPos.x()
        dy = event.y() - self.lastPos.y()

        if event.buttons() & Qt.LeftButton:
            self.rotateBy(8 * dy, 8 * dx, 0)
        elif event.buttons() & Qt.RightButton:
            self.rotateBy(8 * dy, 0, 8 * dx)

        self.lastPos = event.pos()

    def mouseReleaseEvent(self, event):
        self.clicked.emit()

    def makeObject(self):
        self.textures = []
        self.texCoords = []
        self.vertices = []

        root = QFileInfo(__file__).absolutePath()

        for i in range(6):
            self.textures.append(
                    QOpenGLTexture(
                            QImage(root + ('/images/side%d.png' % (i + 1))).mirrored()))

            for j in range(4):
                self.texCoords.append(((j == 0 or j == 3), (j == 0 or j == 1)))

                x, y, z = self.coords[i][j]
                self.vertices.append((0.2 * x, 0.2 * y, 0.2 * z))
Exemple #15
0
class QtGL2Material(Material):
    def __init__(self, renderer):
        super().__init__()

        self._gl = renderer._gl

        self._shader_program = None
        self._uniform_indices = {}
        self._attribute_indices = {}
        self._uniform_values = {}
        self._bound = False
        self._textures = {}

        self._disable_textures = Application.getInstance(
        ).getCommandLineOption("disable-textures", False)

    def loadVertexShader(self, file):
        if not self._shader_program:
            self._shader_program = QOpenGLShaderProgram()

        self._shader_program.addShaderFromSourceFile(QOpenGLShader.Vertex,
                                                     file)

    def loadFragmentShader(self, file):
        if not self._shader_program:
            self._shader_program = QOpenGLShaderProgram()

        self._shader_program.addShaderFromSourceFile(QOpenGLShader.Fragment,
                                                     file)

    def build(self):
        if not self._shader_program:
            Logger.log("e", "No shader sources loaded")
            return

        self._shader_program.link()

    def setUniformValue(self, name, value, **kwargs):
        if not self._shader_program:
            return

        cache = True
        if "cache" in kwargs:
            cache = kwargs["cache"]

        if name not in self._uniform_indices:
            self._uniform_indices[name] = self._shader_program.uniformLocation(
                name)

        uniform = self._uniform_indices[name]
        if uniform == -1:
            return

        if cache:
            self._uniform_values[uniform] = value

        if self._bound:
            self._setUniformValueDirect(uniform, value)

    def setUniformTexture(self, name, file):
        if not self._shader_program or self._disable_textures:
            return

        if name not in self._uniform_indices:
            self._uniform_indices[name] = self._shader_program.uniformLocation(
                name)

        index = self._uniform_indices[name]

        texture = QOpenGLTexture(QImage(file).mirrored())
        texture.setMinMagFilters(QOpenGLTexture.Linear, QOpenGLTexture.Linear)
        self._textures[index] = texture

        self._uniform_values[index] = 1

        if self._bound:
            texture = self._textures[index]
            texture.bind()
            self._setUniformValueDirect(index, texture.textureId())

    def enableAttribute(self, name, type, offset, stride=0):
        if not self._shader_program:
            return

        self.bind()

        if name not in self._attribute_indices:
            self._attribute_indices[
                name] = self._shader_program.attributeLocation(name)

        attribute = self._attribute_indices[name]
        if attribute == -1:
            return

        if type is "int":
            self._shader_program.setAttributeBuffer(attribute, self._gl.GL_INT,
                                                    offset, 1, stride)
        elif type is "float":
            self._shader_program.setAttributeBuffer(attribute,
                                                    self._gl.GL_FLOAT, offset,
                                                    1, stride)
        elif type is "vector2f":
            self._shader_program.setAttributeBuffer(attribute,
                                                    self._gl.GL_FLOAT, offset,
                                                    2, stride)
        elif type is "vector3f":
            self._shader_program.setAttributeBuffer(attribute,
                                                    self._gl.GL_FLOAT, offset,
                                                    3, stride)
        elif type is "vector4f":
            self._shader_program.setAttributeBuffer(attribute,
                                                    self._gl.GL_FLOAT, offset,
                                                    4, stride)

        self._shader_program.enableAttributeArray(attribute)

    def disableAttribute(self, name):
        if not self._shader_program:
            return

        if name not in self._attribute_indices:
            return

        self._shader_program.disableAttributeArray(
            self._attribute_indices[name])

    def bind(self):
        if not self._shader_program or not self._shader_program.isLinked():
            return

        if self._bound:
            return

        self._bound = True
        self._shader_program.bind()

        for uniform in self._uniform_values:
            if uniform in self._textures:
                texture = self._textures[uniform]
                texture.bind()
                self._setUniformValueDirect(uniform, 0)
            else:
                self._setUniformValueDirect(uniform,
                                            self._uniform_values[uniform])

    def release(self):
        if not self._shader_program or not self._bound:
            return

        for texture in self._textures.values():
            texture.release()

        self._bound = False
        self._shader_program.release()

    def _matrixToQMatrix4x4(self, m):
        return QMatrix4x4(m.at(0, 0), m.at(0, 1), m.at(0, 2), m.at(0, 3),
                          m.at(1, 0), m.at(1, 1), m.at(1, 2), m.at(1, 3),
                          m.at(2, 0), m.at(2, 1), m.at(2, 2), m.at(2, 3),
                          m.at(3, 0), m.at(3, 1), m.at(3, 2), m.at(3, 3))

    def _setUniformValueDirect(self, uniform, value):
        if type(value) is Vector:
            self._shader_program.setUniformValue(
                uniform, QVector3D(value.x, value.y, value.z))
        elif type(value) is Matrix:
            self._shader_program.setUniformValue(
                uniform, self._matrixToQMatrix4x4(value))
        elif type(value) is Color:
            self._shader_program.setUniformValue(
                uniform,
                QColor(value.r * 255, value.g * 255, value.b * 255,
                       value.a * 255))
        elif type(value) is list and len(value) is 2:
            self._shader_program.setUniformValue(uniform,
                                                 QVector2D(value[0], value[1]))
        elif type(value) is list and len(value) is 3:
            self._shader_program.setUniformValue(
                uniform, QVector3D(value[0], value[1], value[2]))
        elif type(value) is list and len(value) is 4:
            self._shader_program.setUniformValue(
                uniform, QVector4D(value[0], value[1], value[2], value[3]))
        else:
            self._shader_program.setUniformValue(uniform, value)
class MyWidget(QtOpenGL.QGLWidget):
    def __init__(self, parent=None):
        super(MyWidget, self).__init__(parent)

        self.quadCoord = np.array([[-1., -1., 0.], [1., -1., 0.], [1., 1., 0.],
                                   [1., 1., 0.], [-1., 1., 0.], [-1., -1.,
                                                                 0.]])

        self.quadCoordTex = np.array([[0, 0], [1., 0.], [1., 1.], [1., 1.],
                                      [0, 1.], [0, 0]])

    def initializeGL(self):
        GL.glClearColor(1.0, 0.0, 0.0, 1.0)
        GL.glEnable(GL.GL_BLEND)
        GL.glBlendFunc(GL.GL_SRC_ALPHA, GL.GL_ONE_MINUS_SRC_ALPHA)
        GL.glClear(GL.GL_COLOR_BUFFER_BIT)

        print("OpenGL.GL: " + str(GL.glGetString(GL.GL_VERSION)))
        print("GL.GLSL: " +
              str(GL.glGetString(GL.GL_SHADING_LANGUAGE_VERSION)))
        print("OpenGL ATTRIBUTES:\n",
              ", ".join(d for d in dir(GL) if d.startswith("GL_")))

        self.program = QOpenGLShaderProgram()
        self.program.addShaderFromSourceCode(
            QOpenGLShader.Vertex, """#version 120
        attribute vec2 position;
        attribute vec2 texcoord;
        varying vec2 mytexcoord;
        void main() {
            gl_Position = vec4(position, 0., 1.0);
            mytexcoord = texcoord;
        }""")

        self.program.addShaderFromSourceCode(
            QOpenGLShader.Fragment, """#version 120
        uniform sampler2D texture;
        varying vec2 mytexcoord;
        void main() {
            
            gl_FragColor = texture2D(texture,mytexcoord);
        }""")
        print(self.program.log())
        self.program.link()

        self.texture = fillTexture2d(
            np.outer(np.linspace(0, 1, 128), np.ones(128)))

    def paintGL(self):
        #GL.glClear(GL.GL_COLOR_BUFFER_BIT)
        self.program.bind()

        self.program.enableAttributeArray("position")
        self.program.enableAttributeArray("texcoord")
        self.program.setAttributeArray("position", self.quadCoord)
        self.program.setAttributeArray("texcoord", self.quadCoordTex)

        GL.glActiveTexture(GL.GL_TEXTURE0)
        GL.glBindTexture(GL.GL_TEXTURE_2D, self.texture)
        self.program.setUniformValue("texture", 0)

        GL.glDrawArrays(GL.GL_TRIANGLES, 0, len(self.quadCoord))
Exemple #17
0
class LogoRenderer():  #protected QOpenGLFunctions
    """docstring for LogoRenderer"""
    def __init__(self):
        super(LogoRenderer, self).__init__()
        self.m_fAngle = None
        self.m_fScale = None
        self.vertices = []
        self.normals = []
        self.program1 = QOpenGLShaderProgram()
        self.vertexAttr1 = 0
        self.normalAttr1 = 0
        self.matrixUniform1 = 0

        ver = QOpenGLVersionProfile()
        ver.setVersion(2, 1)
        cntx = QOpenGLContext.currentContext()
        #print("QOpenGLContext:", cntx, ver)
        fmt = cntx.format()
        fmt.setVersion(2, 1)
        cntx.setFormat(fmt)
        self.gl = cntx.versionFunctions(ver)

    def render(self):
        self.gl.glDepthMask(True)

        self.gl.glClearColor(0.5, 0.5, 0.7, 1.0)
        self.gl.glClear(self.gl.GL_COLOR_BUFFER_BIT
                        | self.gl.GL_DEPTH_BUFFER_BIT)

        self.gl.glTexParameteri(self.gl.GL_TEXTURE_2D,
                                self.gl.GL_TEXTURE_MIN_FILTER,
                                self.gl.GL_LINEAR)
        self.gl.glTexParameteri(self.gl.GL_TEXTURE_2D,
                                self.gl.GL_TEXTURE_MAG_FILTER,
                                self.gl.GL_LINEAR)

        self.gl.glFrontFace(self.gl.GL_CW)
        self.gl.glCullFace(self.gl.GL_FRONT)
        self.gl.glEnable(self.gl.GL_CULL_FACE)
        self.gl.glEnable(self.gl.GL_DEPTH_TEST)

        modelview = QMatrix4x4()
        modelview.rotate(self.m_fAngle, 0.0, 1.0, 0.0)
        modelview.rotate(self.m_fAngle, 1.0, 0.0, 0.0)
        modelview.rotate(self.m_fAngle, 0.0, 0.0, 1.0)
        modelview.scale(self.m_fScale)
        modelview.translate(0.0, -0.2, 0.0)

        self.program1.bind()
        self.program1.setUniformValue(self.matrixUniform1, modelview)
        self.paintQtLogo()
        self.program1.release()

        self.gl.glDisable(self.gl.GL_DEPTH_TEST)
        self.gl.glDisable(self.gl.GL_CULL_FACE)

        self.m_fAngle += 1.0

    def initialize(self):
        #print("initialize.gls")
        self.gl.initializeOpenGLFunctions()

        self.gl.glClearColor(0.1, 0.1, 0.2, 1.0)

        vshader1 = QOpenGLShader(QOpenGLShader.Vertex, self.program1)
        vsrc1 = str("attribute highp vec4 vertex;\n"
                    "attribute mediump vec3 normal;\n"
                    "uniform mediump mat4 matrix;\n"
                    "varying mediump vec4 color;\n"
                    "void main(void)\n"
                    "{\n"
                    "    vec3 toLight = normalize(vec3(0.0, 0.3, 1.0));\n"
                    "    float angle = max(dot(normal, toLight), 0.0);\n"
                    "    vec3 col = vec3(0.40, 1.0, 0.0);\n"
                    "    color = vec4(col * 0.2 + col * 0.8 * angle, 1.0);\n"
                    "    color = clamp(color, 0.0, 1.0);\n"
                    "    gl_Position = matrix * vertex;\n"
                    "}\n")
        vshader1.compileSourceCode(vsrc1)

        fshader1 = QOpenGLShader(QOpenGLShader.Fragment, self.program1)
        fsrc1 = str("varying mediump vec4 color;\n"
                    "void main(void)\n"
                    "{\n"
                    "    gl_FragColor = color;\n"
                    "}\n")
        fshader1.compileSourceCode(fsrc1)

        self.program1.addShader(vshader1)
        self.program1.addShader(fshader1)
        self.program1.link()

        self.vertexAttr1 = self.program1.attributeLocation("vertex")
        self.normalAttr1 = self.program1.attributeLocation("normal")
        self.matrixUniform1 = self.program1.uniformLocation("matrix")

        self.gl.glTexParameteri(self.gl.GL_TEXTURE_2D,
                                self.gl.GL_TEXTURE_MIN_FILTER,
                                self.gl.GL_LINEAR)
        self.gl.glTexParameteri(self.gl.GL_TEXTURE_2D,
                                self.gl.GL_TEXTURE_MAG_FILTER,
                                self.gl.GL_LINEAR)

        self.m_fAngle = 0
        self.m_fScale = 1
        self.createGeometry()

    def paintQtLogo(self):
        self.program1.enableAttributeArray(self.normalAttr1)
        self.program1.enableAttributeArray(self.vertexAttr1)
        self.program1.setAttributeArray(self.vertexAttr1, self.vertices)
        self.program1.setAttributeArray(self.normalAttr1, self.normals)
        self.gl.glDrawArrays(self.gl.GL_TRIANGLES, 0, len(self.vertices))
        self.program1.disableAttributeArray(self.normalAttr1)
        self.program1.disableAttributeArray(self.vertexAttr1)

    def createGeometry(self):
        self.vertices.clear()
        self.normals.clear()

        x1 = +0.06
        y1 = -0.14
        x2 = +0.14
        y2 = -0.06
        x3 = +0.08
        y3 = +0.00
        x4 = +0.30
        y4 = +0.22

        self.quad(x1, y1, x2, y2, y2, x2, y1, x1)
        self.quad(x3, y3, x4, y4, y4, x4, y3, x3)

        self.extrude(x1, y1, x2, y2)
        self.extrude(x2, y2, y2, x2)
        self.extrude(y2, x2, y1, x1)
        self.extrude(y1, x1, x1, y1)
        self.extrude(x3, y3, x4, y4)
        self.extrude(x4, y4, y4, x4)
        self.extrude(y4, x4, y3, x3)

        NumSectors = 100

        for i in range(NumSectors):
            angle1 = (i * 2 * math.pi) / NumSectors
            x5 = 0.30 * math.sin(angle1)
            y5 = 0.30 * math.cos(angle1)
            x6 = 0.20 * math.sin(angle1)
            y6 = 0.20 * math.cos(angle1)

            angle2 = ((i + 1) * 2 * math.pi) / NumSectors
            x7 = 0.20 * math.sin(angle2)
            y7 = 0.20 * math.cos(angle2)
            x8 = 0.30 * math.sin(angle2)
            y8 = 0.30 * math.cos(angle2)

            self.quad(x5, y5, x6, y6, x7, y7, x8, y8)

            self.extrude(x6, y6, x7, y7)
            self.extrude(x8, y8, x5, y5)

        for i in range(len(self.vertices)):
            self.vertices[i] *= 2.0

    def quad(self, x1, y1, x2, y2, x3, y3, x4, y4):
        #print("quad inicio")
        self.vertices.append(QVector3D(x1, y1, -0.05))
        self.vertices.append(QVector3D(x2, y2, -0.05))
        self.vertices.append(QVector3D(x4, y4, -0.05))

        self.vertices.append(QVector3D(x3, y3, -0.05))
        self.vertices.append(QVector3D(x4, y4, -0.05))
        self.vertices.append(QVector3D(x2, y2, -0.05))

        n = QVector3D.normal(QVector3D(x2 - x1, y2 - y1, 0.0),
                             QVector3D(x4 - x1, y4 - y1, 0.0))

        for i in range(6):
            self.normals.append(n)

        self.vertices.append(QVector3D(x4, y4, 0.05))
        self.vertices.append(QVector3D(x2, y2, 0.05))
        self.vertices.append(QVector3D(x1, y1, 0.05))

        self.vertices.append(QVector3D(x2, y2, 0.05))
        self.vertices.append(QVector3D(x4, y4, 0.05))
        self.vertices.append(QVector3D(x3, y3, 0.05))

        n = QVector3D.normal(QVector3D(x2 - x4, y2 - y4, 0.0),
                             QVector3D(x1 - x4, y1 - y4, 0.0))

        for i in range(6):
            self.normals.append(n)
        #print("quad fin")

    def extrude(self, x1, y1, x2, y2):
        #print("extrude inicio")
        self.vertices.append(QVector3D(x1, y1, +0.05))
        self.vertices.append(QVector3D(x2, y2, +0.05))
        self.vertices.append(QVector3D(x1, y1, -0.05))

        self.vertices.append(QVector3D(x2, y2, -0.05))
        self.vertices.append(QVector3D(x1, y1, -0.05))
        self.vertices.append(QVector3D(x2, y2, +0.05))

        n = QVector3D.normal(QVector3D(x2 - x1, y2 - y1, 0.0),
                             QVector3D(0.0, 0.0, -0.1))

        for i in range(6):
            self.normals.append(n)
class TriangleUnderlayRenderer(QObject):
    def __init__(self, parent=None):
        super(TriangleUnderlayRenderer, self).__init__(parent)
        self._shader_program = None
        self._viewport_size = QSize()
        self._window = None
        self._camera = Camera()

        self._perspective_projection_matrix = perspective_projection(
            45.0, 4.0 / 3.0, 0.001, 100.0)

        self._orthographic_projection_matrix = orthographic_projection(
            640.0, 480.0, 0.001, 100.0)

        self._model_matrix = np.identity(4)

        self._projection_type = 0
        self._projection_matrix = self._perspective_projection_matrix

        self._theta = 0.0

    def set_theta(self, theta):
        self._theta = theta

    # around y axis
    def build_rotation_matrix(self):
        m = np.identity(4)
        m[0][0] = np.cos(np.radians(self._theta))
        m[0][2] = np.sin(np.radians(self._theta))
        m[2][0] = -np.sin(np.radians(self._theta))
        m[2][2] = np.cos(np.radians(self._theta))
        return m

    @pyqtSlot(int)
    def setProjectionType(self, t):
        if t != self._projection_type:
            self._projection_type = t

    @pyqtSlot()
    def paint(self):
        # for Darwin, it's a must
        if pf.uname().system == 'Darwin':
            global GL
            GL = self._window.openglContext().versionFunctions()

        w = self._viewport_size.width()
        h = self._viewport_size.height()

        GL.glViewport(0, 0, int(w), int(h))

        if self._shader_program is None:
            self._shader_program = QOpenGLShaderProgram()
            self._shader_program.addShaderFromSourceFile(
                QOpenGLShader.Vertex, 'shaders/OpenGL_2_1/vertex.glsl')
            self._shader_program.addShaderFromSourceFile(
                QOpenGLShader.Fragment, 'shaders/OpenGL_2_1/fragment.glsl')
            self._shader_program.bindAttributeLocation('position', 0)
            self._shader_program.bindAttributeLocation('color', 1)
            self._shader_program.link()

        self._shader_program.bind()
        self._shader_program.enableAttributeArray(0)
        self._shader_program.enableAttributeArray(1)

        self._shader_program.setAttributeArray(0, positions)
        self._shader_program.setAttributeArray(1, colors)

        if self._projection_type == 0:
            self._projection_matrix = self._perspective_projection_matrix
        elif self._projection_type == 1:
            self._projection_matrix = self._orthographic_projection_matrix

        self._model_matrix = self.build_rotation_matrix()

        self._shader_program.setUniformValue(
            'model_matrix', QMatrix4x4(self._model_matrix.flatten().tolist()))

        self._shader_program.setUniformValue(
            'view_matrix',
            QMatrix4x4(self._camera.get_view_matrix().flatten().tolist()))

        self._shader_program.setUniformValue(
            'projection_matrix',
            QMatrix4x4(self._projection_matrix.flatten().tolist()))

        GL.glClearColor(0.2, 0.2, 0.2, 1)
        GL.glEnable(GL.GL_DEPTH_TEST)
        GL.glClear(GL.GL_COLOR_BUFFER_BIT)
        GL.glDrawArrays(GL.GL_TRIANGLES, 0, 3)

        self._shader_program.disableAttributeArray(0)
        self._shader_program.disableAttributeArray(1)

        self._shader_program.release()

        # Restore the OpenGL state for QtQuick rendering
        self._window.resetOpenGLState()
        self._window.update()

    def set_viewport_size(self, size):
        self._viewport_size = size

    def set_window(self, window):
        self._window = window

    def set_projection_matrix(self):
        # Need to be set every time we change the size of the window
        self._perspective_projection_matrix = perspective_projection(
            45.0,
            self._viewport_size.width() / self._viewport_size.height(), 0.001,
            100.0)

        self._orthographic_projection_matrix = orthographic_projection(
            self._viewport_size.width(), self._viewport_size.height(), 0.001,
            100.0)
Exemple #19
0
class MainWindow(QMainWindow, Ui_MainWindow):
    def __init__(self, processor, df, parent=None):
        super().__init__(parent)
        self.parent = parent
        self.processor = processor
        # Data
        self.df = df

        # UI
        self.setupUi(self)
        self.setupControls()
        self.keyPressEvent = self.keyPressed
        self.mouseMoveEvent = self.mouseMoved

        # Control & Display
        self.mouse_grabbed = False

        self.camera_pos = QVector3D(0.5, 0.5, -2)  # Start camera position
        self.center = QVector3D(0.5, 0, 0.5)  # Center of object
        self.rot_center = QVector3D(0.5, 0.5, 0.5)  # Center of rotation
        self.camera_rot = QVector3D(0, 0, 1)  # Camera rotation
        self.scale_vec = QVector3D(1, 1, 1)  # Object scale
        self.real_prop = processor.get_real_scaling()  # val to lat

        self.light_pos = QVector3D(self.xLightSpinBox.value(),
                                   self.yLightSpinBox.value(),
                                   self.zLightSpinBox.value())
        self.ambient = self.ambientSlider.value() / 100
        self.diffuse = self.diffuseSlider.value() / 100
        self.alpha = self.alphaSlider.value() / 100  # Transparency

        # Drawing
        self.normals = []
        self.colors = []
        self.coords_array = []
        # !> len(self.normals) == len(self.colors) == len(self.coords_array)

        self.update_light = False  # Update for light is needed
        self.update_buffer = False  # Update for whole buffer is needed

        self.show_grid = self.gridCheckBox.isChecked()
        self.show_contour = self.contourCheckBox.isChecked()
        self.contour_levels = self.contourLevelSpinBox.value()
        self.show_light_lines = True
        self.grid_freq = 10

        self.grid_color = QVector4D(1, 1, 1, 1)
        self.contour_color = QVector4D(1, 1, 1, 1)
        self.light_line_color = QVector4D(1, 0.6, 0, 1)

        self.prepareScene()
        self.updateUi()

        self.shaders = QOpenGLShaderProgram()
        self.openGLWidget.initializeGL = self.initializeGL
        self.openGLWidget.paintGL = self.paintGL

    def updateUi(self):
        """Set up custom widgets & positions"""
        self.splitDockWidget(self.displayDockWidget, self.elevationDockWidget,
                             Qt.Vertical)
        self.splitDockWidget(self.elevationDockWidget, self.displayDockWidget,
                             Qt.Vertical)

        self.tabifyDockWidget(self.elevationDockWidget, self.minimapDockWidget)
        self.tabifyDockWidget(self.displayDockWidget, self.lightDockWidget)
        self.tabifyDockWidget(self.projDockWidget, self.additionalDockWidget)
        self.tabifyDockWidget(self.elevationDockWidget, self.cameraDockWidget)
        self.lightDockWidget.raise_()
        self.additionalDockWidget.raise_()
        self.elevationDockWidget.raise_()

        self.elevationWidget = ElevationGraphWidget(
            self.processor.min_val,
            self.processor.max_val,
            self.processor.denormalizeValue(self.camera_pos.y()),
            width=240,
            height=100)
        self.minimapWidget = MinimapGraphWidget(self.processor,
                                                self.camera_pos,
                                                self.camera_rot,
                                                width=240,
                                                height=100)
        self.elevationWidgetLayout.addWidget(self.elevationWidget)
        self.minimapLayout.addWidget(self.minimapWidget)
        self.mapDockWidgetControls()

        self.actionOpenAnother.triggered.connect(self.onOpenAnother)

    def onOpenAnother(self):
        """Open another GeoTIFF file"""
        self.parent.show()
        self.hide()
        self.deleteLater()

    def mapDockWidgetControls(self):
        """Show/hide dockwidgets via corresponding actions"""
        self.dock_widgets = [
            self.lightDockWidget, self.cameraDockWidget,
            self.additionalDockWidget, self.minimapDockWidget,
            self.displayDockWidget, self.projDockWidget,
            self.elevationDockWidget
        ]
        self.dock_actions = [
            self.actionShowLightSourceDW, self.actionShowCameraDW,
            self.actionShowAdditionalDW, self.actionShowMinimapDW,
            self.actionShowDisplayDW, self.actionShowProjectionDW,
            self.actionShowElevationDW
        ]
        for dock_widget, action in zip(self.dock_widgets, self.dock_actions):

            def wrapper(action):
                def dock_widget_close_event(event):
                    action.setChecked(False)
                    event.accept()

                return dock_widget_close_event

            dock_widget.closeEvent = wrapper(action)
            action.triggered.connect(dock_widget.setVisible)

    # ==================== PREPARATION ====================
    def prepareScene(self):
        """Prepare the data for bufferization"""
        self.coords_array = []
        self.colors = []
        self.normals = []
        polygons, normals, colors = self.getMapPolygons()
        self.map_data = self.preparePolygons(polygons, normals, colors)
        # self.normal_data = self.prepareNormalLines(polygons, normals, colors)

        polygons, normals, colors = self.getLightSourceCoords()
        self.light_data = self.preparePolygons(polygons, normals, colors)
        if self.show_light_lines:
            lines, line_colors = self.getLightLines()
            self.light_lines_data = self.prepareLines(lines, line_colors)

        if self.show_grid:
            lines, line_colors = self.getGrid()
            self.grid_data = self.prepareLines(lines, line_colors)
        if self.show_contour:
            self.contour_data = self.getContour()

    # POLYGONS
    def getLightSourceCoords(self):
        polygons = np.array([((0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 0, 0)),
                             ((0, 0, 1), (0, 1, 1), (1, 1, 1), (1, 0, 1)),
                             ((0, 0, 0), (0, 0, 1), (1, 0, 1), (1, 0, 0)),
                             ((0, 1, 0), (0, 1, 1), (1, 1, 1), (1, 1, 0)),
                             ((0, 0, 0), (0, 0, 1), (0, 1, 1), (0, 1, 0)),
                             ((1, 0, 0), (1, 0, 1), (1, 1, 1), (1, 1, 0))])
        normals = [(0, 0, -1), (0, 0, 1), (0, -1, 0), (0, 1, 0), (-1, 0, 0),
                   (1, 0, 0)]

        normals_vec = []
        [[
            normals_vec.append(QVector3D(*normals[i]))
            for _ in range(len(polygons[i]))
        ] for i in range(len(polygons))]

        center = np.array(
            (self.light_pos.x(), self.light_pos.y(), self.light_pos.z()))
        delta = np.array((0.5, 0.5, 0.5))
        polygons = [[(p - delta) * 0.05 + center for p in side]
                    for side in polygons]
        colors = []
        [
            colors.append(QVector4D(1, 153 / 255, 0, 1) * self.diffuse)
            for _ in range(len(normals_vec))
        ]
        return polygons, normals_vec, colors

    def getMapPolygons(self):
        polygons, normals, colors = [], [], []
        for polygon, normal in self.processor.polygon_generator(self.df):
            polygons.append(self.swapPoints(polygon))
            [
                normals.append(QVector3D(*self.swapPoint(*normal)))
                for _ in polygon
            ]
            [colors.append(self.getColorByValue(val)) for x, y, val in polygon]
        return polygons, normals, colors

    def getColorByValue(self, value):
        """Get QVector4D-color from green (value == 0) to red (value == 1)
        :param value: 0 - 1
        """
        hue = 120 * (1 - value) / 360
        color = QColor.fromHslF(hue, 1, 0.5)
        color_vec = QVector4D(color.redF(), color.greenF(), color.blueF(), 0.5)
        return color_vec

    def swapPoint(self, lon, lat, value):
        return lon, value, lat

    def swapPoints(self, polygon):
        return [(lon, value, lat) for lon, lat, value in polygon]

    def prepareNormalLines(self, polygons, normals, colors):
        """Normal lines for each polygon.
        Debug only
        """
        norm_i = 0
        start = len(self.coords_array)
        for polygon in polygons:
            point = polygon[0]
            normal = normals[norm_i]
            # color = colors[norm_i]
            color = QVector4D(1, 1, 1, 1)
            point_2 = QVector3D(*point) + normal * 0.04
            point_2 = (point_2.x(), point_2.y(), point_2.z())
            self.prepareLine((point, point_2), [color] * 2)
            norm_i += len(polygon)
        end = len(self.coords_array)
        return start, end

    def preparePolygons(self, polygons, normals, colors, start_index=None):
        """Prepare polygons for bufferization

        :param polygons: a list like [(p11, p12, ...), (p21, p22, ...)]
        :param normals: normals with number of normals equal to points
        :param colors: colors for each point
        :param start_index: if None, start at the end of each array.
        Otherwise, overwrite
        """
        assert len(normals) == len(colors)
        coords_array = []
        [[coords_array.append(list(p)) for p in polygon]
         for polygon in polygons]
        start = len(self.coords_array)
        if start_index is None:
            self.coords_array += coords_array
            self.normals += normals
            self.colors += colors
        else:
            for i, j in enumerate(
                    range(start_index, start_index + len(coords_array))):
                self.coords_array[j] = coords_array[i]
                self.normals[j] = normals[i]
                self.colors[j] = colors[i]
        end = len(self.coords_array)
        return start, end

    # LINES
    def getGrid(self):
        assert self.processor.min_lat != self.processor.max_lat \
            and self.processor.min_val != self.processor.max_val
        value = self.processor.min_val - \
            (self.processor.max_val - self.processor.min_val) * 0.1

        lines = []
        for lat in np.linspace(self.processor.min_lat, self.processor.max_lat,
                               self.grid_freq):
            line = ((self.processor.min_lon, lat, value),
                    (self.processor.max_lon, lat, value))
            lines.append(line)
        for lon in np.linspace(self.processor.min_lon, self.processor.max_lon,
                               self.grid_freq):
            line = ((lon, self.processor.min_lat, value),
                    (lon, self.processor.max_lat, value))
            lines.append(line)

        # lines.append(((self.min_lon, self.min_lat, self.min_val),
        #              (self.min_lon, self.min_lat, self.max_val)))

        lines = [
            self.swapPoints(self.processor.normalizePoints(line))
            for line in lines
        ]
        line_colors = [(self.grid_color, self.grid_color) for _ in lines]
        return lines, line_colors

    def getContour(self):
        lev_lines = self.processor.get_contour(levels=self.contour_levels)
        contour = []
        for level, line in lev_lines:
            line = [(self.processor.normalizeLon(lon),
                     self.processor.normalizeValue(level + 10),
                     self.processor.normalizeLat(lat)) for lon, lat in line]
            colors = [self.contour_color] * len(line)
            contour.append(self.prepareLine(line, colors))
        return contour

    def getLightLines(self):
        if self.processor.max_val == self.processor.min_val:
            v = 0
        else:
            v = self.processor.normalizeValue(
                self.processor.min_val -
                (self.processor.max_val - self.processor.min_val) * 0.1)
        lines = (((self.light_pos.x(), v, -100), (self.light_pos.x(), v, 100)),
                 ((-100, v, self.light_pos.z()), (100, v, self.light_pos.z())),
                 ((self.light_pos.x(), v, self.light_pos.z()),
                  (self.light_pos.x(), self.light_pos.y(),
                   self.light_pos.z())))
        line_colors = [(self.light_line_color, self.light_line_color)
                       for _ in lines]
        return lines, line_colors

    def prepareLines(self, lines, line_colors, start_index=None):
        """Prepare lines for bufferization

        :param lines: list like one for polygons
        :param line_colors: list of colors of each line
        :param start_index: start index
        """
        assert len(lines) == len(line_colors)
        if start_index is None:
            data = [None] * len(lines)
        else:
            data = []
            sum_len = 0
            for line in lines:
                data.append(start_index + sum_len)
                sum_len += len(line)

        result = [
            self.prepareLine(line, colors, datum)
            for line, colors, datum in zip(lines, line_colors, data)
        ]
        return result[0][0], result[-1][1]

    def prepareLine(self, line, colors, start_index=None):
        assert len(line) == len(colors)
        if start_index is None:
            start = len(self.coords_array)
            self.coords_array += line
            self.colors += colors
            self.normals += [QVector3D(0, 1, 0)] * len(line)
            end = len(self.coords_array)
        else:
            start = start_index
            for i, j in enumerate(range(start_index, start_index + len(line))):
                self.coords_array[j] = line[i]
                self.colors[j] = colors[i]
            end = start_index + len(line)
        return start, end

    # ==================== SCENE PREPARATION ====================
    def initializeGL(self):
        GL.glClearColor(0.1, 0.1, 0.1, 1.0)
        GL.glEnableClientState(GL.GL_VERTEX_ARRAY)
        self.setUpShaders()
        self.initVertexArrays()

    def setUpShaders(self):
        self.shaders.addShaderFromSourceFile(
            QOpenGLShader.Vertex, resource_path('shaders/shader.vert'))
        self.shaders.addShaderFromSourceFile(
            QOpenGLShader.Fragment, resource_path('shaders/shader.frag'))
        self.shaders.link()
        self.shaders.bind()

    def initVertexArrays(self):
        """Init buffers"""
        assert len(self.coords_array) == len(self.colors) == len(self.normals)
        GL.glVertexPointer(3, GL.GL_FLOAT, 0, self.coords_array)
        self.shaders.setAttributeArray("v_color", self.colors)
        self.shaders.enableAttributeArray("v_color")
        self.shaders.setAttributeArray("v_normal", self.normals)
        self.shaders.enableAttributeArray("v_normal")

    # ==================== UPDATING STUFF ====================
    def updateGL(func):
        def wrapper(self, *args, **kwargs):
            res = func(self, *args, **kwargs)
            self.openGLWidget.update()
            return res

        return wrapper

    def updateCameraInfo(func):
        """A decorator to update camera widgets after excution
        """
        def wrapper(self, *args, **kwargs):
            res = func(self, *args, **kwargs)
            coef = 1 if not self.realPropCheckBox.isChecked() \
                else self.real_prop
            self.elevationWidget.updatePos(
                self.processor.denormalizeValue(self.camera_pos.y() /
                                                (self.scale_vec.y()) * coef))
            self.minimapWidget.updateCameraInfo(
                self.camera_pos * self.scale_vec, self.camera_rot)
            return res

        return wrapper

    def updateLightData(self):
        """Update parts of buffer used to display the light source"""
        polygons, normals, colors = self.getLightSourceCoords()
        self.preparePolygons(polygons, normals, colors, self.light_data[0])
        lines, colors = self.getLightLines()
        self.prepareLines(lines, colors, self.light_lines_data[0])
        GL.glVertexPointer(3, GL.GL_FLOAT, 0, self.coords_array)
        self.update_light = False

    def updateBuffer(self):
        """Update the whole buffer"""
        self.prepareScene()
        self.initVertexArrays()
        self.update_buffer = False

    # ==================== ACTUAL DRAWING ====================
    def paintGL(self):
        self.loadScene()
        if self.update_light:
            self.updateLightData()
        if self.update_buffer:
            self.updateBuffer()
        self.updateMatrices()
        self.updateParams()
        self.drawScene()

    def loadScene(self):
        width, height = self.openGLWidget.width(), self.openGLWidget.height()
        view = max(width, height)
        GL.glViewport(int((width - view) / 2), int((height - view) / 2), view,
                      view)
        GL.glPolygonMode(GL.GL_FRONT_AND_BACK, GL.GL_FILL)
        GL.glEnable(GL.GL_BLEND)
        GL.glBlendFunc(GL.GL_SRC_ALPHA, GL.GL_ONE_MINUS_SRC_ALPHA)
        GL.glEnable(GL.GL_DEPTH_TEST)
        GL.glDepthFunc(GL.GL_LEQUAL)

    def updateMatrices(self):
        """Update projection matrices"""
        proj = QMatrix4x4()
        coef = 0.01
        center_x = 0
        center_y = 0
        projection = (-1 * coef + center_x, 1 * coef + center_x,
                      -1 * coef + center_y, 1 * coef + center_y, 2.8 * coef,
                      20)
        if self.perspectiveRadioButton.isChecked():
            proj.frustum(*projection)
        else:
            proj.ortho(*projection)
        modelview = QMatrix4x4()
        modelview.lookAt(self.camera_pos, self.camera_pos + self.camera_rot,
                         QVector3D(0, 1, 0))
        self.shaders.setUniformValue("ModelViewMatrix", modelview)
        self.shaders.setUniformValue("MVP", proj * modelview)

    def updateParams(self):
        """Update light, alpha and scaling parameters"""
        self.shaders.setUniformValue("LightPos", self.light_pos)
        self.shaders.setUniformValue("ambientStrength", self.ambient)
        self.shaders.setUniformValue("diffuseStrength", self.diffuse)
        self.shaders.setUniformValue("alpha", self.alpha)
        self.shaders.setUniformValue("center", self.center)
        self.shaders.setUniformValue("scale", self.scale_vec)

    def drawScene(self):
        """Paint all the prepared data"""
        GL.glClear(GL.GL_COLOR_BUFFER_BIT)
        self.shaders.setUniformValue('scaleEnabled', False)
        self.shaders.setUniformValue('phongModel', False)
        self.drawPreparedPolygons(*self.light_data)
        if self.show_light_lines:
            self.drawPreparedLines(*self.light_lines_data)

        self.shaders.setUniformValue('scaleEnabled', True)
        if self.show_grid:
            self.drawPreparedLines(*self.grid_data)

        # self.drawPreparedLines(*self.normal_data)
        self.shaders.setUniformValue('phongModel', True)
        self.drawPreparedPolygons(*self.map_data)

        if self.show_contour:
            self.shaders.setUniformValue('phongModel', False)
            self.drawPreparedLineStrips(self.contour_data)

    def drawPreparedPolygons(self, start, end):
        for i in range(start, end, 4):
            GL.glDrawArrays(GL.GL_POLYGON, i, 4)

    def drawPreparedLines(self, start, end):
        GL.glDrawArrays(GL.GL_LINES, start, end - start)

    def drawPreparedLineStrips(self, arr):
        for start, end in arr:
            GL.glDrawArrays(GL.GL_LINE_STRIP, start, end - start)

    # ==================== CONTROLS ====================
    def setupControls(self):
        """Connect controls to this class' methods"""
        # Camera
        self.moveCameraUp.clicked.connect(lambda: self.moveCamera(az=1))
        self.moveCameraDown.clicked.connect(lambda: self.moveCamera(az=-1))
        self.moveCameraLeft.clicked.connect(lambda: self.moveCamera(pol=1))
        self.moveCameraRight.clicked.connect(lambda: self.moveCamera(pol=-1))
        self.moveCameraForward.clicked.connect(lambda: self.moveCamera(z=-1))
        self.moveCameraBackward.clicked.connect(lambda: self.moveCamera(z=1))

        # Scaling
        self.xScaleSpinBox.valueChanged.connect(lambda x: self.scaleView(x=x))
        self.yScaleSpinBox.valueChanged.connect(lambda y: self.scaleView(y=y))
        self.zScaleSpinBox.valueChanged.connect(lambda z: self.scaleView(z=z))
        self.realPropCheckBox.stateChanged.connect(
            lambda: self.scaleView(y=self.yScaleSpinBox.value()))

        # Light
        self.ambientSlider.valueChanged.connect(
            lambda ambient: self.setLight(ambient=ambient / 100))
        self.diffuseSlider.valueChanged.connect(
            lambda diffuse: self.setLight(diffuse=diffuse / 100))

        self.xLightSpinBox.valueChanged.connect(lambda x: self.setLight(x=x))
        self.yLightSpinBox.valueChanged.connect(lambda y: self.setLight(y=y))
        self.zLightSpinBox.valueChanged.connect(lambda z: self.setLight(z=z))

        # Display
        self.gridCheckBox.toggled.connect(lambda g: self.setGrid(show=g))
        self.contourCheckBox.toggled.connect(lambda c: self.setContour(show=c))
        self.contourLevelSpinBox.valueChanged.connect(
            lambda l: self.setContour(levels=l))

        # Misc
        self.alphaSlider.valueChanged.connect(
            lambda alpha: self.setDisplay(alpha / 100))
        self.actionGrabKeyboard.toggled.connect(self.toggleGrabKeyboard)
        self.actionGrabMouse.toggled.connect(self.toggleGrabMouse)
        self.orhogonalRadioButton.clicked.connect(self.openGLWidget.update)
        self.perspectiveRadioButton.clicked.connect(self.openGLWidget.update)

        self.openGLWidget.mousePressEvent \
            = lambda event: self.actionGrabMouse.setChecked(True)

    def keyPressed(self, event):
        key = event.key()
        camera_dict = {
            Qt.Key_W: {
                'z': 1
            },
            Qt.Key_S: {
                'z': -1
            },
            Qt.Key_A: {
                'x': -1
            },
            Qt.Key_D: {
                'x': 1
            },
            Qt.Key_Z: {
                'y': 1
            },
            Qt.Key_X: {
                'y': -1
            },
            Qt.Key_Up: {
                'az': 1
            },
            Qt.Key_Down: {
                'az': -1
            },
            Qt.Key_Left: {
                'pol': 1
            },
            Qt.Key_Right: {
                'pol': -1
            }
        }
        self.moveCamera(**camera_dict.get(key, {}))
        if key == Qt.Key_Escape:
            self.actionGrabMouse.setChecked(False)
            self.actionGrabKeyboard.setChecked(False)

    def mouseMoved(self, event):
        az_sensivity = 0.03
        pol_sensivity = 0.03
        if self.mouse_grabbed:
            delta = event.globalPos() - self.mouse_center
            QCursor.setPos(self.mouse_center)
            if event.buttons() == Qt.RightButton:
                self.moveCameraAroundCenter(az=delta.y() * az_sensivity,
                                            pol=delta.x() * pol_sensivity)
            else:
                self.moveCamera(az=delta.y() * az_sensivity,
                                pol=delta.x() * pol_sensivity)
        else:
            super().mouseMoveEvent(event)

    def getRotVec(self):
        rot_matr = QMatrix4x4()
        rot_matr.rotate(-90, 0, 1, 0)
        rot_vec = QVector3D(self.camera_rot)
        rot_vec.setY(0)
        rot_vec = rot_matr * rot_vec
        return rot_vec

    @updateGL
    @updateCameraInfo
    def moveCamera(self, az=0, pol=0, x=0, y=0, z=0):
        move_coef = 0.1
        rot_coef = 2

        rot_vec = self.getRotVec()

        if az != 0 or pol != 0:
            rot_matr = QMatrix4x4()
            rot_matr.rotate(rot_coef * az, rot_vec)
            rot_matr.rotate(rot_coef * pol, 0, 1, 0)
            self.camera_rot = rot_matr * self.camera_rot
        if z:
            self.camera_pos += move_coef * self.camera_rot * z
        if x:
            self.camera_pos += rot_vec * move_coef * x
        if y:
            self.camera_pos.setY(self.camera_pos.y() + y * move_coef)

    @updateGL
    @updateCameraInfo
    def moveCameraAroundCenter(self, az=0, pol=0):
        rot_coef = 4

        rot_vec = self.getRotVec()
        rot_matr = QMatrix4x4()
        rot_matr.rotate(rot_coef * az, rot_vec)
        rot_matr.rotate(rot_coef * pol, 0, 1, 0)
        rot_center = self.rot_center * self.scale_vec

        self.camera_pos -= rot_center
        self.camera_pos = rot_matr * self.camera_pos
        self.camera_pos += rot_center

        self.camera_rot = -self.camera_pos + rot_center

    @updateGL
    @updateCameraInfo
    def scaleView(self, x=None, y=None, z=None):
        if x:
            self.scale_vec.setX(x)
        if y:
            if self.realPropCheckBox.isChecked():
                self.scale_vec.setY(y * self.real_prop)
            else:
                self.scale_vec.setY(y)
        if z:
            self.scale_vec.setZ(z)

    @updateGL
    def setLight(self, x=None, y=None, z=None, ambient=None, diffuse=None):
        if x:
            self.light_pos.setX(x)
        if y:
            self.light_pos.setY(y)
        if z:
            self.light_pos.setZ(z)
        if ambient:
            self.ambient = ambient
        if diffuse:
            self.diffuse = diffuse
        self.update_light = True

    @updateGL
    def setDisplay(self, alpha=None, invisible=None):
        if invisible:
            self.invisible = invisible
        if alpha:
            self.alpha = alpha

    @updateGL
    def setGrid(self, show):
        self.show_grid = show
        self.update_buffer = True

    @updateGL
    def setContour(self, show=None, levels=None):
        if show is not None:
            self.show_contour = show
            self.update_buffer = True
        if levels is not None:
            self.contour_levels = levels
            if self.show_contour:
                self.update_buffer = True

    def toggleGrabKeyboard(self, grab: bool):
        if grab:
            self.grabKeyboard()
        else:
            self.releaseKeyboard()

    def toggleGrabMouse(self, grab: bool):
        self.actionGrabKeyboard.setChecked(grab)
        self.mouse_grabbed = grab
        if grab:
            self.setCursor(Qt.BlankCursor)
            self.mouse_center = self.getMouseCenter()
            QCursor.setPos(self.mouse_center)
            self.setMouseTracking(True)
            self.grabMouse()
        else:
            self.setCursor(Qt.ArrowCursor)
            self.setMouseTracking(False)
            self.releaseMouse()

    def getMouseCenter(self):
        w, h = self.openGLWidget.width(), self.openGLWidget.height()
        local_center = QPoint(w / 2, h / 2)
        global_center = self.mapToGlobal(self.openGLWidget.pos()) \
            + local_center
        return global_center
Exemple #20
0
class GLWidget(QOpenGLWidget):

    clicked = pyqtSignal()

    PROGRAM_VERTEX_ATTRIBUTE, PROGRAM_TEXCOORD_ATTRIBUTE = range(2)

    vsrc = """
attribute highp vec4 vertex;
attribute mediump vec4 texCoord;
varying mediump vec4 texc;
uniform mediump mat4 matrix;
void main(void)
{
    gl_Position = matrix * vertex;
    texc = texCoord;
}
"""

    fsrc = """
uniform sampler2D texture;
varying mediump vec4 texc;
void main(void)
{
    gl_FragColor = texture2D(texture, texc.st);
}
"""

    coords = (((+1, -1, -1), (-1, -1, -1), (-1, +1, -1), (+1, +1, -1)),
              ((+1, +1, -1), (-1, +1, -1), (-1, +1, +1), (+1, +1, +1)),
              ((+1, -1, +1), (+1, -1, -1), (+1, +1, -1), (+1, +1, +1)),
              ((-1, -1, -1), (-1, -1, +1), (-1, +1, +1),
               (-1, +1, -1)), ((+1, -1, +1), (-1, -1, +1), (-1, -1, -1),
                               (+1, -1, -1)), ((-1, -1, +1), (+1, -1, +1),
                                               (+1, +1, +1), (-1, +1, +1)))

    def __init__(self, parent=None):
        super(GLWidget, self).__init__(parent)

        self.clearColor = QColor(Qt.black)
        self.xRot = 0
        self.yRot = 0
        self.zRot = 0
        self.program = None

        self.lastPos = QPoint()

    def minimumSizeHint(self):
        """
        Define the minimum size of the widget
        """
        return QSize(50, 50)

    def sizeHint(self):
        """
        Define a default size for the widget
        """
        return QSize(200, 200)

    def rotateBy(self, xAngle, yAngle, zAngle):
        self.xRot += xAngle
        self.yRot += yAngle
        self.zRot += zAngle
        self.update()

    def setClearColor(self, color):
        self.clearColor = color
        self.update()

    def initializeGL(self):
        self.gl = self.context().versionFunctions()
        self.gl.initializeOpenGLFunctions()

        self.makeObject()

        self.gl.glEnable(self.gl.GL_DEPTH_TEST)
        self.gl.glEnable(self.gl.GL_CULL_FACE)

        vshader = QOpenGLShader(QOpenGLShader.Vertex, self)
        vshader.compileSourceCode(self.vsrc)

        fshader = QOpenGLShader(QOpenGLShader.Fragment, self)
        fshader.compileSourceCode(self.fsrc)

        self.program = QOpenGLShaderProgram()
        self.program.addShader(vshader)
        self.program.addShader(fshader)
        self.program.bindAttributeLocation('vertex',
                                           self.PROGRAM_VERTEX_ATTRIBUTE)
        self.program.bindAttributeLocation('texCoord',
                                           self.PROGRAM_TEXCOORD_ATTRIBUTE)
        self.program.link()

        self.program.bind()
        self.program.setUniformValue('texture', 0)

        self.program.enableAttributeArray(self.PROGRAM_VERTEX_ATTRIBUTE)
        self.program.enableAttributeArray(self.PROGRAM_TEXCOORD_ATTRIBUTE)
        self.program.setAttributeArray(self.PROGRAM_VERTEX_ATTRIBUTE,
                                       self.vertices)
        self.program.setAttributeArray(self.PROGRAM_TEXCOORD_ATTRIBUTE,
                                       self.texCoords)

    def paintGL(self):
        self.gl.glClearColor(self.clearColor.redF(), self.clearColor.greenF(),
                             self.clearColor.blueF(), self.clearColor.alphaF())
        self.gl.glClear(self.gl.GL_COLOR_BUFFER_BIT
                        | self.gl.GL_DEPTH_BUFFER_BIT)

        m = QMatrix4x4()
        m.ortho(-0.5, 0.5, 0.5, -0.5, 4.0, 15.0)
        m.translate(0.0, 0.0, -10.0)

        self.program.setUniformValue('matrix', m)

        self.texture.bind()
        self.gl.glDrawArrays(self.gl.GL_TRIANGLE_FAN, 0, 4)

    def resizeGL(self, width, height):
        side = min(width, height)
        self.gl.glViewport((width - side) // 2, (height - side) // 2, side,
                           side)

    def makeObject(self):
        self.texCoords = [(True, True), (False, True), (False, False),
                          (True, False)]
        self.vertices = [(0.5, -0.5, -0.5), (-0.5, -0.5, -0.5),
                         (-0.5, 0.5, -0.5), (0.5, 0.5, -0.5)]

        my_movie = QImage('/Users/reno/Dropbox/media/cloudy.png')
        self.texture = QOpenGLTexture(my_movie.mirrored())
Exemple #21
0
class SquircleRenderer(QObject):  # QOpenGLFunctions
    """docstring for SquircleRenderer"""

    def __init__(self, parent=None):
        super(SquircleRenderer, self).__init__(parent)
        self.m_t = 0.0
        self.m_program = None
        self.m_viewportSize = QSize()

    def setT(self, t):
        self.m_t = t

    def setViewportSize(self, size):
        self.m_viewportSize = size

    def setWin(self, win):
        self.win = win

        ver = QOpenGLVersionProfile()
        ver.setVersion(2, 1)

        self.m_context = self.win.openglContext()
        self.gl = self.m_context.versionFunctions(ver)

    @pyqtSlot()
    def paint(self):
        if not self.m_program:
            self.gl.initializeOpenGLFunctions()

            self.m_program = QOpenGLShaderProgram(self)
            self.m_program.addShaderFromSourceCode(
                QOpenGLShader.Vertex,
                "attribute highp vec4 vertices;"
                "varying highp vec2 coords;"
                "void main() {"
                "    gl_Position = vertices;"
                "    coords = vertices.xy;"
                "}",
            )
            self.m_program.addShaderFromSourceCode(
                QOpenGLShader.Fragment,
                "uniform lowp float t;"
                "varying highp vec2 coords;"
                "void main() {"
                "    lowp float i = 1. - (pow(abs(coords.x), 4.) + pow(abs(coords.y), 4.));"
                "    i = smoothstep(t - 0.8, t + 0.8, i);"
                "    i = floor(i * 20.) / 20.;"
                "    gl_FragColor = vec4(coords * .5 + .5, i, i);"
                "}",
            )

            self.m_program.bindAttributeLocation("vertices", 0)

            self.m_program.link()

        self.m_program.bind()

        self.m_program.enableAttributeArray(0)

        values = [(-1, -1), (1, -1), (-1, 1), (1, 1)]

        self.m_program.setAttributeArray(0, values)

        self.m_program.setUniformValue("t", self.m_t)

        # print("DATA:",self.m_viewportSize.width(), self.m_viewportSize.height(), self.m_t)#, self.gl.glViewport)

        self.gl.glViewport(0, 0, self.m_viewportSize.width(), self.m_viewportSize.height())

        self.gl.glDisable(self.gl.GL_DEPTH_TEST)

        self.gl.glClearColor(0, 0, 0, 1)

        self.gl.glClear(self.gl.GL_COLOR_BUFFER_BIT)

        self.gl.glEnable(self.gl.GL_BLEND)

        self.gl.glBlendFunc(self.gl.GL_SRC_ALPHA, self.gl.GL_ONE)

        self.gl.glDrawArrays(self.gl.GL_TRIANGLE_STRIP, 0, 4)

        self.m_program.disableAttributeArray(0)

        self.m_program.release()
Exemple #22
0
class LogoRenderer():#protected QOpenGLFunctions
    """docstring for LogoRenderer"""
    def __init__(self):
        super(LogoRenderer, self).__init__()
        self.m_fAngle = None
        self.m_fScale = None
        self.vertices = []
        self.normals = []
        self.program1 = QOpenGLShaderProgram()
        self.vertexAttr1 = 0
        self.normalAttr1 = 0
        self.matrixUniform1 = 0

        ver = QOpenGLVersionProfile()
        ver.setVersion(2, 1)
        cntx = QOpenGLContext.currentContext()
        #print("QOpenGLContext:", cntx, ver)
        fmt = cntx.format()
        fmt.setVersion(2, 1)
        cntx.setFormat(fmt)
        self.gl = cntx.versionFunctions(ver)


    def render(self):
        self.gl.glDepthMask(True)

        self.gl.glClearColor(0.5, 0.5, 0.7, 1.0)
        self.gl.glClear(self.gl.GL_COLOR_BUFFER_BIT | self.gl.GL_DEPTH_BUFFER_BIT)

        self.gl.glTexParameteri(self.gl.GL_TEXTURE_2D, self.gl.GL_TEXTURE_MIN_FILTER, self.gl.GL_LINEAR )
        self.gl.glTexParameteri(self.gl.GL_TEXTURE_2D, self.gl.GL_TEXTURE_MAG_FILTER, self.gl.GL_LINEAR )

        self.gl.glFrontFace(self.gl.GL_CW)
        self.gl.glCullFace(self.gl.GL_FRONT)
        self.gl.glEnable(self.gl.GL_CULL_FACE)
        self.gl.glEnable(self.gl.GL_DEPTH_TEST)

        modelview = QMatrix4x4()
        modelview.rotate(self.m_fAngle, 0.0, 1.0, 0.0)
        modelview.rotate(self.m_fAngle, 1.0, 0.0, 0.0)
        modelview.rotate(self.m_fAngle, 0.0, 0.0, 1.0)
        modelview.scale(self.m_fScale)
        modelview.translate(0.0, -0.2, 0.0)

        self.program1.bind()
        self.program1.setUniformValue(self.matrixUniform1, modelview)
        self.paintQtLogo()
        self.program1.release()

        self.gl.glDisable(self.gl.GL_DEPTH_TEST)
        self.gl.glDisable(self.gl.GL_CULL_FACE)

        self.m_fAngle += 1.0

    def initialize(self):
        #print("initialize.gls")
        self.gl.initializeOpenGLFunctions()

        self.gl.glClearColor(0.1, 0.1, 0.2, 1.0)

        vshader1 = QOpenGLShader(QOpenGLShader.Vertex, self.program1)
        vsrc1 = str("attribute highp vec4 vertex;\n"
                "attribute mediump vec3 normal;\n"
                "uniform mediump mat4 matrix;\n"
                "varying mediump vec4 color;\n"
                "void main(void)\n"
                "{\n"
                "    vec3 toLight = normalize(vec3(0.0, 0.3, 1.0));\n"
                "    float angle = max(dot(normal, toLight), 0.0);\n"
                "    vec3 col = vec3(0.40, 1.0, 0.0);\n"
                "    color = vec4(col * 0.2 + col * 0.8 * angle, 1.0);\n"
                "    color = clamp(color, 0.0, 1.0);\n"
                "    gl_Position = matrix * vertex;\n"
                "}\n")
        vshader1.compileSourceCode(vsrc1)

        fshader1 = QOpenGLShader(QOpenGLShader.Fragment, self.program1)
        fsrc1 = str("varying mediump vec4 color;\n"
                "void main(void)\n"
                "{\n"
                "    gl_FragColor = color;\n"
                "}\n")
        fshader1.compileSourceCode(fsrc1)

        self.program1.addShader(vshader1)
        self.program1.addShader(fshader1)
        self.program1.link()

        self.vertexAttr1 = self.program1.attributeLocation("vertex")
        self.normalAttr1 = self.program1.attributeLocation("normal")
        self.matrixUniform1 = self.program1.uniformLocation("matrix")

        self.gl.glTexParameteri(self.gl.GL_TEXTURE_2D, self.gl.GL_TEXTURE_MIN_FILTER, self.gl.GL_LINEAR )
        self.gl.glTexParameteri(self.gl.GL_TEXTURE_2D, self.gl.GL_TEXTURE_MAG_FILTER, self.gl.GL_LINEAR )

        self.m_fAngle = 0
        self.m_fScale = 1
        self.createGeometry()

    def paintQtLogo(self):
        self.program1.enableAttributeArray(self.normalAttr1)
        self.program1.enableAttributeArray(self.vertexAttr1)
        self.program1.setAttributeArray(self.vertexAttr1, self.vertices)
        self.program1.setAttributeArray(self.normalAttr1, self.normals)
        self.gl.glDrawArrays(self.gl.GL_TRIANGLES, 0, len(self.vertices))
        self.program1.disableAttributeArray(self.normalAttr1)
        self.program1.disableAttributeArray(self.vertexAttr1)

    def createGeometry(self):
        self.vertices.clear()
        self.normals.clear()

        x1 = +0.06
        y1 = -0.14
        x2 = +0.14
        y2 = -0.06
        x3 = +0.08
        y3 = +0.00
        x4 = +0.30
        y4 = +0.22

        self.quad(x1, y1, x2, y2, y2, x2, y1, x1)
        self.quad(x3, y3, x4, y4, y4, x4, y3, x3)

        self.extrude(x1, y1, x2, y2)
        self.extrude(x2, y2, y2, x2)
        self.extrude(y2, x2, y1, x1)
        self.extrude(y1, x1, x1, y1)
        self.extrude(x3, y3, x4, y4)
        self.extrude(x4, y4, y4, x4)
        self.extrude(y4, x4, y3, x3)

        NumSectors = 100

        for i in range(NumSectors):
            angle1 = (i * 2 * math.pi) / NumSectors
            x5 = 0.30 * math.sin(angle1)
            y5 = 0.30 * math.cos(angle1)
            x6 = 0.20 * math.sin(angle1)
            y6 = 0.20 * math.cos(angle1)

            angle2 = ((i + 1) * 2 * math.pi) / NumSectors
            x7 = 0.20 * math.sin(angle2)
            y7 = 0.20 * math.cos(angle2)
            x8 = 0.30 * math.sin(angle2)
            y8 = 0.30 * math.cos(angle2)

            self.quad(x5, y5, x6, y6, x7, y7, x8, y8)

            self.extrude(x6, y6, x7, y7)
            self.extrude(x8, y8, x5, y5)
        

        for i in range(len(self.vertices)):
            self.vertices[i] *= 2.0



    def quad(self, x1, y1, x2, y2, x3, y3, x4, y4):
        #print("quad inicio")
        self.vertices.append(QVector3D(x1, y1, -0.05))
        self.vertices.append(QVector3D(x2, y2, -0.05))
        self.vertices.append(QVector3D(x4, y4, -0.05))

        self.vertices.append(QVector3D(x3, y3, -0.05))
        self.vertices.append(QVector3D(x4, y4, -0.05))
        self.vertices.append(QVector3D(x2, y2, -0.05))

        n = QVector3D.normal(QVector3D(x2 - x1, y2 - y1, 0.0), QVector3D(x4 - x1, y4 - y1, 0.0))

        for i in range(6):
            self.normals.append(n)

        self.vertices.append(QVector3D(x4, y4, 0.05))
        self.vertices.append(QVector3D(x2, y2, 0.05))
        self.vertices.append(QVector3D(x1, y1, 0.05))

        self.vertices.append(QVector3D(x2, y2, 0.05))
        self.vertices.append(QVector3D(x4, y4, 0.05))
        self.vertices.append(QVector3D(x3, y3, 0.05))

        n = QVector3D.normal(QVector3D(x2 - x4, y2 - y4, 0.0), QVector3D(x1 - x4, y1 - y4, 0.0))

        for i in range(6):
            self.normals.append(n)
        #print("quad fin")

    def extrude(self, x1, y1, x2, y2):
        #print("extrude inicio")
        self.vertices.append(QVector3D(x1, y1, +0.05))
        self.vertices.append(QVector3D(x2, y2, +0.05))
        self.vertices.append(QVector3D(x1, y1, -0.05))

        self.vertices.append(QVector3D(x2, y2, -0.05))
        self.vertices.append(QVector3D(x1, y1, -0.05))
        self.vertices.append(QVector3D(x2, y2, +0.05))

        n = QVector3D.normal(QVector3D(x2 - x1, y2 - y1, 0.0), QVector3D(0.0, 0.0, -0.1))

        for i in range(6):
            self.normals.append(n)