Exemple #1
0
red = Mod.reduced(A, E, Qs)

import random
import math


def Gs(i, j):
    return lambda: random.gauss(Qs[0][i, j], math.sqrt(Qs[1][i, j]))


import Pymatr.synthesis as Syn

from Pymatr.utils import numerical
L = red.dEigen
nsyn = 100
Gen = Syn.MatrixRngOpt(numerical(A), numerical(E / L), Gs, nsyn)


def average():
    s = sum(Gen())
    av = s / nsyn
    #	print(" \n sum {},  average: {}\n".format(r, av) )
    return av


lln = red.lln()
import Pymatr.byPieces as Bp
Bp.plot(lln)

import Pymatr.histogram as H
nsample = 1000
Exemple #2
0
def GsLLN(i, j):
    return lambda: random.gauss(Qs[0][i, j], 1)


def GsCLT(i, j):
    return lambda: random.gauss(0, math.sqrt(Qs[1][i, j]))


import Pymatr.synthesis as Syn

nsyn = 500
nhist = 1000

from Pymatr.utils import numerical

E0n = numerical(E0)
A0n = numerical(A0)
GenLLN = Syn.MatrixRngOpt(A0n, E0n, GsLLN, nsyn)
GenCLT = Syn.MatrixRngOpt(A0n, E0n, GsCLT, nsyn)
__latex__(r'''%
\begin{equation}
\mEx = ''')
__pynclusion__(pr.mat(E0, spacing="0.1cm"))
__latex__(r''', \quad \mAx_{i,j} = 1   
\end{equation}

 
\section{Strongly connected classes $\Xi_i$}
The first step is to identify the irreducible classes (called strongly connected components in graph theory) of $\mE$.
In order to do so, an interesting method is to compute a connectivity matrix $\Conn$
\begin{equation} 
Exemple #3
0
import Pymatr.model as Mod


red= Mod.reduced(A,E, Qs )  

import random
import math
def Gs(i,j):
	return lambda : random.gauss( Qs[0][i,j], math.sqrt(Qs[1][i,j]) )  
import Pymatr.synthesis as Syn

from Pymatr.utils import numerical
L= red.dEigen
nsyn=100
Gen = Syn.MatrixRngOpt(numerical(A),numerical(E/L), Gs, nsyn)

def average():
	s= sum(Gen())
	av= s /nsyn
#	print(" \n sum {},  average: {}\n".format(r, av) )
	return av

lln=red.lln()
import Pymatr.byPieces as Bp
Bp.plot(lln)


import Pymatr.histogram as H
nsample=1000
H.plot(nsample, average)
def GsLLN(i,j):
	return lambda : random.gauss( Qs[0][i,j] , 1 ) 

def GsCLT(i,j):
	return lambda : random.gauss( 0, math.sqrt(Qs[1][i,j]) ) 




import Pymatr.synthesis as Syn
nsyn = 500 
nhist=1000


from Pymatr.utils import numerical
E0n= numerical(E0)
A0n= numerical(A0) 
GenLLN = Syn.MatrixRngOpt(A0n, E0n, GsLLN, nsyn)   
GenCLT = Syn.MatrixRngOpt(A0n, E0n, GsCLT, nsyn) 
__latex__(r'''%
\begin{equation}
\mEx = ''')
__pynclusion__(pr.mat(E0,spacing="0.1cm"))
__latex__(r''', \quad \mAx_{i,j} = 1   
\end{equation}

 
\section{Strongly connected classes $\Xi_i$}
The first step is to identify the irreducible classes (called strongly connected components in graph theory) of $\mE$.
In order to do so, an interesting method is to compute a connectivity matrix $\Conn$
\begin{equation}