Exemple #1
0
 def nii(input_folder, output_folder):
     """
     Take a folder, recursively traverse through all its subfolders, convert each subfolder into a NII file
     :param input_folder:
     :param output_folder:
     :return:
     """
     os.chdir(output_folder)
     create("nii")
     logger.info("Generating NII files:")
     path_nii = os.path.join(output_folder, "nii")
     DICOM_convert.to_nii(input_folder, path_nii)
     DICOM_convert.fix_series(path_nii)
     logger.info("Nii files generated!")
Exemple #2
0
 def raw_sorted(input_folder, output_folder):
     """
     FLATCOPY (with timestampe to avoid naming duplications) to a an output folder with raw prefix, then SORT THEM with proper protocole series acquisition number.
     :param input_folder:
     :param output_folder:
     :return:
     """
     os.chdir(output_folder)
     os.chdir(output_folder)
     create("raw_sorted")
     logger.info("Generating sorted raw files:")
     path_raw_sorted = os.path.join(output_folder, "raw_sorted")
     DICOM_sort.into_folder(input_folder, path_raw_sorted)
     DICOM_convert.fix_series(path_raw_sorted)
     logger.info("Sorted raw files completed!")
Exemple #3
0
    def DICOM_universal_convert_default(
            input_root_folder,
            name_default_folder=f"DICOM_UniversalConvert-{unique_name()}"):
        """
        Create a new folder with
        :param input_root_folder:
        :return:
        """

        logger.info("Begin converting folder: " + input_root_folder)

        # Generate the potential name for the new path.
        path_result = f"{input_root_folder}-{name_default_folder}"

        # intellgently create the folder if needed be.
        create(path_result)

        # Trigger the subject specific convertion.
        DICOM_converter.DICOM_universal_convert(input_root_folder, path_result)
        logger.info(f"Finished converting: {input_root_folder}")
Exemple #4
0
    def DICOMOBJ_converter(
            input_root_folder,
            default_folder=f"DICOM_UniversalConvert-{unique_name()}"):
        """
        Create a new folder with
        :param input_root_folder:
        :return:
        """

        path_list = DICOM_converter.DICOMOBJ_finder(input_root_folder)
        for path in path_list:
            logger.info("Begin converting folder: " + path)
            # Get higher folder path.
            path_source = os.path.dirname(path)

            # Generate the potential name for the new path.
            path_result = os.path.join(path_source, default_folder)

            # intellgently create the folder if needed be.
            create(path_result)

            # Trigger the subject specific convertion.
            DICOM_converter.DICOM_universal_convert(path, path_result)
            logger.info(f"Finished converting: {path}")
Exemple #5
0
from imageio import imsave
from pathlib import Path

path_current_file = Path(os.path.realpath(__file__))
path_module = path_current_file.parents[
    2]  # this file is located 3 folders deep: /, /model, /model/Kaggle_DCGAN_Dogs
print(f"{path_module}")
sys.path.append(f"{path_module}")

# Some convenience function I already prebuilt: github.com/dyt811/PythonUtils/
from PythonUtils.PUFile import unique_name
from PythonUtils.PUFolder import recursive_list, create

path_log_run = path_module / Path("logs") / unique_name()

create(path_log_run
       )  # create the training specific folder if it doesn't exist already.

# dimensions_noise = 100
"""
Largely inspired from source: https://github.com/DataSnaek/DCGAN-Keras
"""


class DCGAN:
    def __init__(self, path_discriminator, path_generator, path_output,
                 img_size):

        # Key image properties.
        self.img_size = img_size  # default x and y
        self.channels = 3
    def __init__(
        self,
        input_shape,
        output_classes,
        train_data_path: Path,
        optimizer="adam",
        loss="mse",
        metrics=None,
        checkpoint_metric="val_loss",
        checkpoint_metric_mode="min",
    ):
        # Use these settings per constructor input.
        self.input_shape = input_shape
        self.output_classes = output_classes
        self.loss = loss
        self.optimizer = optimizer

        # Default metrics
        if metrics is None:
            self.metrics = ([
                "mae",
                "mse",
                "mape",
                "cosine",
                loss_SSIM,
                loss_mae_diff_SSIM_composite,
                loss_mse_diff_SSIM_composite,
                f1_metric,
            ], )
        else:
            self.metrics = metrics

        self.checkpoint_metric = checkpoint_metric
        self.checkpoint_metric_mode = checkpoint_metric_mode

        self.train_data = None
        self.path_train_data: Path = train_data_path
        self.test_data = None  # fixme: independent data used for testing (optional?)
        self.callbacks_list = None

        self.model = None
        self.path_prediction = None

        # Default step and epoch size.   Easily overwritten during the run stage.
        self.size_step = 256
        self.size_epoch = 500

        # Dynamically generate model input_path.
        this_file = os.path.realpath(__file__)
        project_root = get_abspath(
            this_file, 2
        )  # todo: this folder path is hard coded. Needs to be generalized.

        # Log path.
        self.path_log, self.path_model = get_paths(project_root)

        # Log run path.
        self.path_log_run = os.path.join(self.path_log,
                                         unique_name() + __name__)

        # Create the Log run path.
        create(self.path_log_run)

        self.model_stage = stage.Initialized